Tracking Linear Continuations for Effect Handlers

Wenhao Tang
The University of Edinburgh

SPLS, March 8th 2023

(Joint work with Sam Lindley,). Garrett Morris, and Daniel Hillerstrom)

NS

Relational

Query
Shredding

Language-
Integrated
Query

Provenance

a2

Lenses

Links

http://www.links-lang.org

Linking theory to practice

Database
Integration

®

Web
Development

Formlets
Model- RPC

View- Calculus
Update

Picture by Simon Fowler

for the web

Concurrency
& Distribution

D

Distributed
Session
Types

o
a

Interactive
Programming

Session
Exceptions

CEK
Machine
(Server)
CPS
Translation
(Client)

Row-based
Effects

Notebook ﬁ
Programming =l

TryLinks

Session Types in Links

Links session types:

- 1A.5:send a value of type A, then continue as s
- ?A.S: receive a value of type A, then continue as s

- End : no communication

Session Types in Links

Links session types:

- 1A.5:send a value of type A, then continue as s
- ?A.S: receive a value of type A, then continue as s

- End : no communication

Primitive operations on session-typed channels:

send : V a (b::Session) . (a, !'a.b) — b
receive : V a (b::Session) . (?a.b) — (a, b)
fork :V (a::Session) . (a — () — ~a

close : End — ()

Session Types in Links are Sound

sig sender : (!Int.End) — (O
fun sender(ch) { var ch = send(42, ch); close(ch) }

Session Types in Links are Sound

sig sender : (!Int.End) — (O
fun sender(ch) { var ch = send(42, ch); close(ch) }
sig receiver : (?Int.End) — (O

fun receiver(ch) { var (i, ch) = receive(ch); close(ch); printInt(i) }

Session Types in Links are Sound

sig sender : (!Int.End) — (O
fun sender(ch) { var ch = send(42, ch); close(ch) }
sig receiver : (?Int.End) — (O

fun receiver(ch) { var (i, ch) = receive(ch); close(ch); printInt(i) }

links> { var ch = fork(receiver); sender(ch) };
42

Session Types in Links are Sound

sig sender : (!Int.End) — (O
fun sender(ch) { var ch = send(42, ch); close(ch) }
sig receiver : (?Int.End) — O

fun receiver(ch) { var (i, ch) = receive(ch); close(ch); printInt(i) }

links> { var ch = fork(receiver); sender(ch) };
42

links> { var ch = fork(receiver); var ch = send(42, ch); close(ch);
close(ch) }3;
<stdin>:1: Type error: Variable ch has linear type
“End’
but is used 2 times.
In expression: var ch = send(42, ch);.

Session Types in Links are Sound

sig sender : (!Int.End) — (O
fun sender(ch) { var ch = send(42, ch); close(ch) }
sig receiver : (?Int.End) — O

fun receiver(ch) { var (i, ch) = receive(ch); close(ch); printInt(i) }

links> { var ch = fork(receiver); sender(ch) };
42

links> { var ch = fork(receiver); var ch = send(42, ch); close(ch);
send(42, ch); close(ch) }3;

var ch
<stdin>:1: Type error: The function
‘send'’
has type
*(Int, !(Int).a::Session) ~b— a::Session’
while the arguments passed to it have types
*Int' and “End'
In expression: send(42, ch). 3

Session Types in Links are Sound

sig sender : (!Int.End) — (O
fun sender(ch) { var ch = send(42, ch); close(ch) }
sig receiver : (?Int.End) — O

fun receiver(ch) { var (i, ch) = receive(ch); close(ch); printInt(i) }

links> { var ch = fork(receiver); sender(ch) };
42

links> { var ch = fork(receiver);
var f = fun(){ var ch = send(42, ch); close(ch) }; fO; fO };
<stdin>:1: Type error: Variable ch of linear type ~?(Int).End is used in a
non-linear function literal.
In expression: fun(){var ch = send(42, ch); close(ch)}.

Session Types in Links are Sound

sig sender : (!Int.End) — (O
fun sender(ch) { var ch = send(42, ch); close(ch) }
sig receiver : (?Int.End) — (O

fun receiver(ch) { var (i, ch) = receive(ch); close(ch); printInt(i) }

links> { var ch = fork(receiver); sender(ch) };
42

links> { var ch = fork(receiver);
var f = linfun(){ var ch = send(42, ch); close(ch) }; fQO; fO 3;
<stdin>:1: Type error: Variable f has linear type
O ~are O
but is used 2 times.
In expression: var f = linfun(){var ch = send(42, ch); close(ch)};.

Effect Handlers in Links

sig choose : () { Choose: () —» Bool }— ()
fun choose() { var i = if (do Choose) 42 else 1; printInt(i) }

Effect Handlers in Links

sig choose : () { Choose: () —» Bool }— ()
fun choose() { var i = if (do Choose) 42 else 1; printInt(i) }

links> handle (choose())
{ case <Choose = r> — r(true) }
42

Effect Handlers in Links

sig choose : () { Choose: () —» Bool }— ()
fun choose() { var i = if (do Choose) 42 else 1; printInt(i) }

links> handle (choose())
{ case <Choose = r> — r(true) }
42

links> handle (choose())
{ case <Choose = r> — r(true); r(false) }
421

Well Typed Programs Can Go Wrong in Links

sig sender2 : (!Int.End) { Choose: () —» Bool }— ()
fun sender2(ch) { var i = if (do Choose) 42 else 1;
var ch = send(i, ch); close(ch) }

Well Typed Programs Can Go Wrong in Links

sig sender2 : (!Int.End) { Choose: () —» Bool }— ()
fun sender2(ch) { var i = if (do Choose) 42 else 1;
var ch = send(i, ch); close(ch) }

links> handle ({ var ch = fork(receiver); sender2(ch) })
{ case <Choose = r> — r(true) }
42

Well Typed Programs Can Go Wrong in Links '

sig sender2 : (!Int.End) { Choose: () —» Bool }— ()
fun sender2(ch) { var i = if (do Choose) 42 else 1;
var ch = send(i, ch); close(ch) }

links> handle ({ var ch = fork(receiver); sender2(ch) })
{ case <Choose = r> — r(true) }
42

links> handle ({ var ch = fork(receiver); sender2(ch) })

{ case <Choose = r> — r(true); r(false) }
*x%: Internal Error in evalir.ml (Please report as a bug): NotFound
chan_7 (in Hashtbl.find) while interpreting.

Thttps://github.com/links-lang/links/issues/544
2Emrich and Hillerstrom, “Broken Links (Presentation)”, 2020.

Our Main Contributions

- F2. an extension of system F with correct interaction between linear

types and effect handlers.
- Prove the safety of F2.

- Q% a ML-variant of FZ, with full type inference based on qualified types.

Our Main Contributions

- F2. an extension of system F with correct interaction between linear

types and effect handlers.
- Prove the safety of FZ...
- Q¢ a ML-variant of F2, with full type inference based on qualified types.

F° : System F with Linear Types®

Value types A B:=a|A—Y B|V'aKA
Linearity Yu=e|o

Type contexts Iu=-|T,x:A
Kind contexts Az=-|MNa:K

Terms M N:a=x | AxAM|AYaKM|MN|MA

Kinds K ==
TypeY

3Mazurak, Zhao, and Zdancewic, “Lightweight Linear Types in System F°”, 2010.

F° Examples

id= AP 1°x%x : VP > o

F° Examples

id=Aa"P 1°x%x VeV > a
F° has subkinding Type® < Type®:

id Int 42 : Int

F° Examples

id=A"a"™P 1°x%x VP o -«
F° has subkinding Type® < Type®:
id Int 42 : Int

Suppose we still have built-in session types, and omit the linearity
annotations on terms and types when it is e.

sendAndClose = Af""En9 1°x!M close (send (x, f)) : (Nnt.End) — Int —° ()

F . System F with Effect Handlers*

Kinds K ==
Value types AB:=a|A— C|Vak.C Type
Computation types C,D == A!'E Comp
Effect types E :={R} Effect
Row types Ru=¢:PR|p|- Row s
Presence types P:=Abs|A—»B|0 Presence
Handler types F:=C3D Handler
Types T:=A|R|P
Type contexts Fe=-|Ix:A
Kind contexts A= -|Aa:K

Values V,W u=x | Ax4.M | AaX.M
Computations M,N ==V W | VT | (return V) | (do £ V)E
| letx < M in N | handle M with H
Handlers H:={returnx— M} | {{pr— M} wH

“Hillerstrom, Lindley, and Atkey, “Effect handlers via generalised continuations”, 2020.

F ..+ F° is BROKEN
eff

Define M;N=let _ <« Min N.
Assuming a global channel f : End, we have:

() ! {Choose:()—Bool} () ' {Choose:()»Bool}=3() ! {}

handle (do Choose (); close f) with {Choose _ — rtrue;rfalse}

r
Bool— () ! {}

F ..+ F° is BROKEN
eff

Define M;N=let _ <« Min N.
Assuming a global channel f : End, we have:

() ! {Choose:()—Bool} () ' {Choose:()»Bool}=3() ! {}

handle (do Choose (); close f) with {Choose _ — rtrue;rfalse}

’
Bool—() 1 {}
~> (rtrue;rfalse)[(A_.close f)/r]

F ..+ F° is BROKEN
eff

Define M;N=let _ <« Min N.
Assuming a global channel f : End, we have:

() ! {Choose:()—Bool} () ' {Choose:()»Bool}=3() ! {}

handle (do Choose (); close f) with {Choose _ — rtrue;rfalse}

’
Bool—() 1 {}
~> (rtrue;rfalse)[(A_.close f)/r]

= close f;close f

fis closed twice!

Fege + F° = F,

ff
Kinds K ==
Value types A B:=a|A—=Y C|V'aK.C TypeY
Computation types C,D :=A!E Comp
Effect types E := {R} Effect
Row types Ru=€:P;R|p|- Row?.
Presence types P:=Abs|A->YB|6 Presence’
Handler types F:=C3D Handler
Types T:=A|R|P
Label sets La=0|{t}w L
Linearity Yi=e|o
Type contexts Fe=-|Ix:A
Kind contexts A= -|Aa:K
Values V, W u=x | A¥xAM | AYaK.M
Computations M,N ==V W | VT | (return V) | (do £ V)E
| letx < M in N | handle M with H
Handlers H:={returnx—> M} | {{pr— M} wH

1

Fixing F .. + F°

It would be great to know that r should be a linear function:

() ! {Choose:()-»Bool} () ! {Choose:()»Bool}=3() ! {}

handle (do Choose ();close f) with {Choose _ [r() g — rtrue;rfalse}
Bool—°() !

Fixing F .. + F°

We could look at the effect signature of Choose:

() ! {Choose:()-»°Bool} () ! {Choose:()»°Bool}=3() ! {}

handle (do Choose ();close f) with {Choose _ | r() 0 — rtrue;rfalse}
Bool—°()!

Fixing F .. + F°

Notice that close f uses a linear variable f:

() ! {Choose:()»°Bool} () ! {Choose:()»°Bool}=3() ! {}

handle (do Choose (); close f) with {Choose _

r — rtrue;rfalse}
f:EndeT Bool—°() ! {}

Fixing F .. + F°

Notice that close f uses a linear variable f:

() ! {Choose:()»°Bool} () ! {Choose:()»°Bool}=3() ! {}

handle (do Choose (); close f) with {Choose _

r — rtrue;rfalse}
f:EndeT Bool—°() ! {}

Core idea: add linearity annotations on effect signatures, and track the
linearity information while typing.

Fixing F .. + F°

Notice that close f uses a linear variable f:

() ! {Choose:()»°Bool} () ! {Choose:()»°Bool}=3() ! {}

handle (do Choose (); close f) with {Choose _

r — rtrue;rfalse}
f:EndeT Bool—°() ! {}

Core idea: add linearity annotations on effect signatures, and track the
linearity information while typing.

The linearity Y in Choose : () =Y Bool reflects control-flow linearity, i.e. the
usage restriction on its context / continuation.

Duality between value linearity and control-flow linearity

For vV : (A: TypeY), Y restricts the linearity of the value itself

- Y =0
- Vis guaranteed to be used linearly
- V may contain linear resources
- Y — e
- no guarantee on the usage of vV
- V must not contain linear resources

Duality between value linearity and control-flow linearity

For vV : (A: TypeY), Y restricts the linearity of the value itself

= Y =NE)
- Vis guaranteed to be used linearly

- V may contain linear resources
S Y=e less restriction on itself (Type® < Type®)

- no guarantee on the usage of vV
- V must not contain linear resources

Duality between value linearity and control-flow linearity

Fordo ¢V :A!{¢: A" —Y B'}, Y restricts the linearity of its context

- Y =0
- ¢ is guaranteed to be handled linearly
- ¢'s continuation may contain linear resources
- Y — e
- no guarantee on the handling of ¢
- 's continuation must not contain linear resources

Duality between value linearity and control-flow linearity

Fordo ¢V :A!{¢: A" —Y B'}, Y restricts the linearity of its context

= Y =NE)
- ¢ is guaranteed to be handled linearly
- ¢'s continuation may contain linear resources

- Y=e more restriction on its context

- no guarantee on the handling of ¢
- ¢'s continuation must not contain linear resources

Duality between value linearity and control-flow linearity

Fordo ¢V : Al {¢: A" »Y B}, Y restricts the linearity of its context

= Y =NE)
- tis guaranteed to be handled linearly
- £'s continuation may contain linear resources

- Y=o more restriction on its context

- no guarantee on the handling of ¢
- f's continuation must not contain linear resources

However, we cannot upcast £ : A” »° B’ to £ : A” »* B’ because it would break
the safety of handling.

Duality between value linearity and control-flow linearity

Instead, we can upcast the kind of row types.

For M : A'{(R: Rowg")}, Y restricts the linearity of its context

- Y =0
- operations in M are guaranteed to be handled linearly
- M'’s continuation may contain linear resources
- Y — e
- no guarantee on the handling of operations in M
- M’s continuation must not contain linear resources

more restriction on its context

Duality between value linearity and control-flow linearity

Instead, we can upcast the kind of row types.

For M : A'{(R: Rowg")}, Y restricts the linearity of its context

S Y =0
- operations in M are guaranteed to be handled linearly
- M's continuation may contain linear resources

- Y=o more restriction on its context

- no guarantee on the handling of operations in M
- M's continuation must not contain linear resources

FY <Y FY <Y FY <Y

’ ’ ’
Fe<o F TypeY < TypeY + Presence’ < Presence’ F ROWLY < RowLY

Tracking Control-Flow Linearity

The evaluation context tells us that continuations consist of only sequencing
and handling.

E-OP handle E[do ¢ V] with H ~> N[V/p, (Ay.handle E[return y]| with H)/r]
where ¢ ¢ bl(E) and (L pr— N) e H

Evaluation context & == [] | let x < & in N | handle & with H

14

Tracking Control-Flow Linearity

The evaluation context tells us that continuations consist of only sequencing
and handling.

E-OP handle E[do ¢ V] with H ~> N[V/p, (Ay.handle E[return y]| with H)/r]
where ¢ ¢ bl(E) and (L pr— N) e H

Evaluation context & == [] | let x < & in N | handle & with H

As deep handlers are always recursive, they cannot use any linear resource.

T-HANDLER
C=A'{(t: A »" B)sR} D=B!{(&: PR}
H = {return x —» M} W {¢; p; ri — N;};

ArT:e AT,x:AFM:D [AT,pi:Airi:Bi =Y D+ N;:DJ;
all types in T are unlimited

A;THH:C=3D

14

Tracking Control-Flow Linearity (Cont.)

Sequencing has a real influence on control-flow linearity.

We can make use of the kinding relation of row types:

T-SEQEQ
AT M :A{R} A;Tp,x : ArF N :B!'{R}
Ar (Tpx:A):Y A+ R:Row”
Y=o: (I3, x : A) may contain linear vars Y=o: Ronly contains lm.ealr ops (»°)
Y=e: (T;,x : A) only contains unlimited vars Y=e : R may contain unlimited ops (—»*)

AT+ Fletx «<— Min N : B! {R}

15

Sound, but not Precise Enough?

;- +do Choose () : () ' {R} - f:End + do Close f : () ' {R}
-+ (f:End):o -+ R : Rowg®

s f : End + do Choose ();do Close f : () ! {R}

16

Sound, but not Precise Enough?

;- +do Choose () : () ' {R} - f:End + do Close f : () ' {R}
-+ (f:End):o -+ R : Rowg®

s f : End + do Choose ();do Close f : () ! {R}

R = {Choose : () -° Bool; Close : End —»° ()} is well-typed but too restrictive

16

Sound, but not Precise Enough?

;- +do Choose () : () ' {R} - f:End + do Close f : () ' {R}
-+ (f:End):o -+ R : Rowg®

s f : End + do Choose ();do Close f : () ! {R}

R = {Choose : () -° Bool; Close : End —»° ()} is well-typed but too restrictive

R = {Choose : () —° Bool; Close : End —»* ()} is more precise but ill-typed

16

Sound, but not Precise Enough?

;- +do Choose () : () ' {R} - f:End + do Close f : () ' {R}
-+ (f:End):o -+ R : Rowg®

s f : End + do Choose ();do Close f : () ! {R}

R = {Choose : () -° Bool; Close : End —»° ()} is well-typed but too restrictive

R = {Choose : () —° Bool; Close : End —»* ()} is more precise but ill-typed

s+ Fdo Choose () : () '{R;} 5 f :End+ do Close f: () ' {Rz}
-+ (f:End):o -+ R; : Rowyp® R <R,

s f : End + do Choose ();do Close f : () ' {R,}

Ry = {Choose : () »° Bool}, R, = {Choose : () »° Bool;Close : End —»* ()}.

16

More Precise Typing Rule for Sequencing

T-SEQSUB
AT FM:A{R} ATy, x : AF N :B!'{Ry}
Ar (Tpx:A):Y ArFR:Row! R <R,

A;I‘1+I‘gkletx%MinN:B!{R2}

More Precise Typing Rule for Sequencing

T-SEQSUB
AT FM:A{R} ATy, x : AF N :B!'{Ry}
Ar (Tpx:A):Y ArFR:Row! R <R,

A;I‘1+I‘gkletx%MinN:B!{R2}

Row subtyping relation m

R <Ry Ry <R3 R <Ry

Ri <R

N

R<R R

N

R3 Ny € :Abs;R; < t:P;Ry

t:P;Ry <{:P;Ry

More Precise Typing Rule for Sequencing

T-SEQSUB
AT FM:A{R} ATy, x : AF N :B!'{Ry}
Ar (Tpx:A):Y ArFR:Row! R <R,

A;I‘1+I‘gkletx%MinN:B!{R2}

Row subtyping relation m

Ry <Ry Ry <R3 Ry <Ry Ry
R3 Ny € :Abs;R; < t:P;Ry ¢:P;Ry <{:P;Ry

N

Ry

R<R R

N

Although it is folklore that row polymorphism can replace row subtyping to
some extent (especially for effect types), in settings like tracking control-flow
linearity, a combination of them is better.

Fo. Metatheory

Standard progress and preservation.

Fo. Metatheory

Standard progress and preservation.

Lemma (Unlimited values are unlimited)

IfA;TEV :Aand A A:e then AFT e

Fo. Metatheory

Standard progress and preservation.

Lemma (Unlimited values are unlimited)
IfA;TEV :Aand A A:e then AFT e
Lemma (Unlimited operations are unlimited)

If AT FE[(do ¢ V)E] : Al {£: A’ - B,R} and ¢ ¢ bl(E), then there exists
ArT =T+ st A+Ty:eand A;Ty,y: By - Ereturn y] : A {¢: A” -»° B’;R}.

Fo. Metatheory

Standard progress and preservation.

Lemma (Unlimited values are unlimited)

IfA;TEV :Aand A A:e then AFT e

Lemma (Unlimited operations are unlimited)

If AT FE[(do ¢ V)E] : Al {£: A’ - B,R} and ¢ ¢ bl(E), then there exists
ArT =T+ st A+Ty:eand A;Ty,y: By - Ereturn y] : A {¢: A” -»° B’;R}.

By further defining a linearity-aware semantics, we can show that every
linear value is used exactly once during evaluation.

Theorem (Evaluation linearity)

If M is proper and M g«» N, then N is also proper and
Z(M)w Z(C)=Z(N)wZ(D).

What about Type Inference ?

Challenges of F2, type inference:

19

What about Type Inference ?

Challenges of F2, type inference:

- First-class polymorphism

19

What about Type Inference ?

Challenges of F2, type inference:

- First-class polymorphism

- Linear types and subkinding

19

What about Type Inference ?

Challenges of F2, type inference:

- First-class polymorphism
- Linear types and subkinding

- Row subtyping

19

What about Type Inference ?

Challenges of F2, type inference:

- First-class polymorphism = prenex polymorphism
- Linear types and subkinding

- Row subtyping

19

What about Type Inference ?

Challenges of F2, type inference:

- First-class polymorphism = prenex polymorphism
- Linear types and subkinding = qualified types (QUILL>)
- Row subtyping

>Morris, “The Best of Both Worlds: Linear Functional Programming without Compromise”, 2016.

19

What about Type Inference ?

Challenges of F2, type inference:
- First-class polymorphism = prenex polymorphism
- Linear types and subkinding = qualified types (QuUILL?)
- Row subtyping = qualified types (ROSE®)

>Morris, “The Best of Both Worlds: Linear Functional Programming without Compromise”, 2016.
6Morris and McKinna, “Abstracting Extensible Data Types: Or, Rows by Any Other Name”, 2019.
19

What about Type Inference ?

Challenges of F2, type inference:

- First-class polymorphism = prenex polymorphism
- Linear types and subkinding = qualified types (QuUILL®)
- Row subtyping = qualified types (ROSE®)

QS : A ML-style variant of F. based on qualified types with

- full type inference without any type annotations
- accurate tracking of control-flow linearity (even more accurate than FZ,)

>Morris, “The Best of Both Worlds: Linear Functional Programming without Compromise”, 2016.
6Morris and McKinna, “Abstracting Extensible Data Types: Or, Rows by Any Other Name”, 2019.

19

Future Work

» Shallow handlers:

- linear shallow handlers can also introduce linear resources into
continuations with a more complex behaviour than sequencing;
- not entirely sure how to track it most accurately.

20

Future Work

» Shallow handlers:
- linear shallow handlers can also introduce linear resources into
continuations with a more complex behaviour than sequencing;
- not entirely sure how to track it most accurately.
> FreezeML(X):

- Links supports first-class polymorphism using FreezeML’;
- non-trivial to extend FreezeML with qualified types.

"Emrich et al,, “FreezeML: Complete and Easy Type Inference for First-Class Polymorphism”, 2020.

20

Future Work

» Shallow handlers:
- linear shallow handlers can also introduce linear resources into
continuations with a more complex behaviour than sequencing;
- not entirely sure how to track it most accurately.
> FreezeML(X):
- Links supports first-class polymorphism using FreezeML’;
- non-trivial to extend FreezeML with qualified types.
> Other classifications of effects:

- besides linear (=°) and unlimited effects (=*), our method can also be
used for other classifications, like algebraic effects vs. higher-order effects.

"Emrich et al,, “FreezeML: Complete and Easy Type Inference for First-Class Polymorphism”, 2020.

20

Thank you!

Kinds K
Type?
Comp
Effect
RowY.
Presence”

Handler

|Aa:K

x| AYxAM | AYeK M
VW | VT | (return V) | (do ¢ V)"

let x < Min N | handle M with H

{return x> M} | (£ pr> M} wH

More Precise Typing Rule for Sequencing

T-SeqSus
AT FM:ANR} ATux:ArN:BI{R)
Av(Tpx:A):Y ArR:Row’ R <R,

ATy + Tk letx — Min N : B {Ry}

Row subtyping relation

Ri =R, Ri <Ry

Ri<Rs <p L:AbSRi<(:PiRy (PRI <(:PiRy

Although it is folklore that row polymorph can replace row subtyping to
some extent (especially for effect types), in settings like tracking control-flow
linearity, a combination of them is better.

Duality between value linearity and control-flow linearity

Instead, we can upcast the kind of row type.
For M: AL{(R: Rowy")}, Y restricts the linearity of its context
Y
- operations in M are guaranteed to be handled linearly
- M's continuation may contain linear resources

S Y=e more restriction on its context

- no guarantee on the handling of operations in M
- M's continuation must not contain linear resources

LYY LY <Y LY <Y
=

+ Type” < Type!” + Presence’ < Presence’ + Row? < Row "’

What about Type Inference ?

Challenges of FZ, type inference:

- First-class polymorphism = prenex polymorphism
- Linear types and subkinding = qualified types (QuiLL®)
- Row subtyping = qualified types (ROSE®)

Q: AML-style variant of F%, based on qualified types with

- full type inference without any type annotations
- accurate tracking of control-flow linearity (even more accurate than F,

SMorris, “The Best of Both Worlds: Linear Functional Programming without Compromise”, 2016.
SMorris and McKinna, "Abstracting Extensible Data Types: Or, Rows by Any Other Name”,

F°. Kinding Rules for Value Types

Kinding relation

FY <Y
Fe<o F TypeY < TypeY/
K-FUN , K-UPCAST
K-FORALL ArA:Type? A+T:K
K-TYVAR ’
Aa:K+C:Comp A+ C:Comp FK<K
Aa:Kra:K AI—VY(XK.C:TypeY Al—A—)YB:TypeY A+T:K'
Extend to contexts

- Y =o:T may contain linear variables (because of K-UPCAST)
- Y =e:T only contains unlimited variables

Context splitting| A+ T =11 + I

- Variables with unlimited types appear in both Iy and I,
- Variables with linear types only appear in one of them

21

F°. Kinding Rules for Other Types

K-Comp K-HANDLER
K-EFFECT ArA: TypeY ArC: Comp
AI—R:ROW% A+ E : Effect A+ D : Comp
A+ {R} : Effect A+ A!'E:Comp A+ C 3D : Handler
K-ABSENT K-PRESENT
A+ Abs : Presence? A+ A —>»Y B: Presence’

K-EXTENDROW
A+ P : Presence’ AFR: Rowzw{[}y

AF-:Row,Y AF€:P;R:RowyY

K-EMPTYROW

22

F. Metatheory (Cont.)

Definition (Properness)

A well-typed computation M or value V is proper if and only if,
1. for every sub-values W in it, if W has some type A which can be given
kind Type®, then (W) = 0;
2. for every sub-computation N of form E[do ¢ V]| where ¢ ¢ bl(&) in it, if N
has some effect type {¢£: A, »° B,;...}, then Z(&) = 0.

23

Q¢ Qualified Types

Row types Ru=p|t:A—>»YB

Linearity Yu=¢|e]|o

Types tu=A|R|Y

Predicates o= 7 <1 | R @R, | RiOR; ~R

only compare linearity only compare label sets
Qualified types pu=A|7r=p
Type schemes o :=p | Va.o
Back to the “print then close” example:
do Print"42";do Close f :
YV gy do.((Print - ¢1) @ p, (Close : ¢po) @ u, File < ¢p1) = () ! {u}

As we know File is a linear type, we can further simplify it to:

do Print"42";do Close f : Y ¢.((Print : o) @ 1, (Close : p) @) = () ' {u}

24

QZ; Typing Rules

Typing relation [P [T+ V: A|[P|T+M:C|[P|T+H:C3D)|

Q-HANDLER
H = {return x — M} W {& pi ri — Ni}i
Q-ABS D=B!{R)} P|T,x:ArM:D
PIT.x:ArM:C [P|T,p;i:Asri:Bi =Y D+ N;: D]
PrI<yY
“any type inIT” < Y PrT<e
Y =e:allvarsin T are unlimited all \{/{ars in T are unlimited
Y = o : essentially no restriction P= (£ : Aj »'* B;)i OR ~ Ry P = RRR,
Y = ¢ : collect the constraint in P combination of (¢); and R R, contains R
P|ITFIxM:A>Y C P|T+H:A!{R} = B! {Ry}
Q-SEQ
PITL,T+M:A'{Ry} P|TnT,x:Ar N:B!{Ry}
PrT'<e P= R QR Pr (Iy,x:A) <Ry
allvars in T are unlimited R, contains Ry “any type in (I, x : A)” < “any label in R,"

Ri=(t:Y);: [P+ (Dhx:A) <Yi);
R, = p: collect the constraint in P

P| T, I, THletx < Min N:B!{Ry}

25

Q. Type Inference

Almost standard Hindley-Milner type inference with qualified types.

Metatheory: Standard soundness and completeness.

Theorem (Soundness)
IfO;T+V:A40,P% then 0’P | 0'(T|s) + V : 0’A. The same applies to
computation and handler typing.

Theorem (Completeness)

IfP|OT -V :A then ;T HV : A’ 46,0, and there exists §” such that
A=0"0'"A', P= 0"0'Q, and 0 = (0”0")|r. The same applies to computation
and handler typing.

Constraint solving? A seemingly correct graph algorithm for checking and
simplifying constraints.

26

Qg More Example

Consider the following function:
AfA9.£0:90
The type inference of FZ.. infers the following principal type:

Vo ag i prz $1 2. (Pa < pia, p1 @ 1)
= () =% aH{um}) =° (0 > @z {p}) =° a2 {2}

While in Fg,

restrictive.

the subtyping relation p; < pz requires py = pp, which is more

27

