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Session Types in Links

Links session types:

- 1A.5:send a value of type A, then continue as s
- ?A.S: receive a value of type A, then continue as s

- End : no communication



Session Types in Links

Links session types:

- 1A.5:send a value of type A, then continue as s
- ?A.S: receive a value of type A, then continue as s

- End : no communication

Primitive operations on session-typed channels:

send : V a (b::Session) . (a, !'a.b) — b
receive : V a (b::Session) . (?a.b) — (a, b)
fork :V  (a::Session) . (a — () — ~a

close : End — ()
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“End’
but is used 2 times.
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Session Types in Links are Sound

sig sender : (!Int.End) — (O
fun sender(ch) { var ch = send(42, ch); close(ch) }
sig receiver : (?Int.End) — O

fun receiver(ch) { var (i, ch) = receive(ch); close(ch); printInt(i) }

links> { var ch = fork(receiver); sender(ch) };
42

links> { var ch = fork(receiver); var ch = send(42, ch); close(ch);
send(42, ch); close(ch) }3;

var ch
<stdin>:1: Type error: The function
‘send'’
has type
*(Int, !(Int).a::Session) ~b— a::Session’
while the arguments passed to it have types
*Int' and “End'
In expression: send(42, ch). 3



Session Types in Links are Sound

sig sender : (!Int.End) — (O
fun sender(ch) { var ch = send(42, ch); close(ch) }
sig receiver : (?Int.End) — O

fun receiver(ch) { var (i, ch) = receive(ch); close(ch); printInt(i) }

links> { var ch = fork(receiver); sender(ch) };
42

links> { var ch = fork(receiver);
var f = fun(){ var ch = send(42, ch); close(ch) }; fO; fO };
<stdin>:1: Type error: Variable ch of linear type ~?(Int).End is used in a
non-linear function literal.
In expression: fun(){var ch = send(42, ch); close(ch)}.



Session Types in Links are Sound

sig sender : (!Int.End) — (O
fun sender(ch) { var ch = send(42, ch); close(ch) }
sig receiver : (?Int.End) — (O

fun receiver(ch) { var (i, ch) = receive(ch); close(ch); printInt(i) }

links> { var ch = fork(receiver); sender(ch) };
42

links> { var ch = fork(receiver);
var f = linfun(){ var ch = send(42, ch); close(ch) }; fQO; fO 3;
<stdin>:1: Type error: Variable f has linear type
O ~are O
but is used 2 times.
In expression: var f = linfun(){var ch = send(42, ch); close(ch)};.



Effect Handlers in Links

sig choose : () { Choose: () —» Bool }— ()
fun choose() { var i = if (do Choose) 42 else 1; printInt(i) }
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Effect Handlers in Links

sig choose : () { Choose: () —» Bool }— ()
fun choose() { var i = if (do Choose) 42 else 1; printInt(i) }

links> handle (choose())
{ case <Choose = r> — r(true) }
42

links> handle (choose())
{ case <Choose = r> — r(true); r(false) }
421



Well Typed Programs Can Go Wrong in Links

sig sender2 : (!Int.End) { Choose: () —» Bool }— ()
fun sender2(ch) { var i = if (do Choose) 42 else 1;
var ch = send(i, ch); close(ch) }
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sig sender2 : (!Int.End) { Choose: () —» Bool }— ()
fun sender2(ch) { var i = if (do Choose) 42 else 1;
var ch = send(i, ch); close(ch) }

links> handle ({ var ch = fork(receiver); sender2(ch) })
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Well Typed Programs Can Go Wrong in Links '

sig sender2 : (!Int.End) { Choose: () —» Bool }— ()
fun sender2(ch) { var i = if (do Choose) 42 else 1;
var ch = send(i, ch); close(ch) }

links> handle ({ var ch = fork(receiver); sender2(ch) })
{ case <Choose = r> — r(true) }
42

links> handle ({ var ch = fork(receiver); sender2(ch) })

{ case <Choose = r> — r(true); r(false) }
*x%: Internal Error in evalir.ml (Please report as a bug): NotFound
chan_7 (in Hashtbl.find) while interpreting.

Thttps://github.com/links-lang/links/issues/544
2Emrich and Hillerstrom, “Broken Links (Presentation)”, 2020.
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- F2. an extension of system F with correct interaction between linear

types and effect handlers.
- Prove the safety of F2.

- Q% a ML-variant of FZ, with full type inference based on qualified types.
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F° : System F with Linear Types®

Value types A B:=a|A—Y B|V'aKA
Linearity Yu=e|o

Type contexts Iu=-|T,x:A
Kind contexts Az=-|MNa:K

Terms M N:a=x | AxAM|AYaKM|MN|MA

Kinds K ==
TypeY

3Mazurak, Zhao, and Zdancewic, “Lightweight Linear Types in System F°”, 2010.



F° Examples

id= AP 1°x%x : VP > o



F° Examples

id=Aa"P 1°x%x VeV > a
F° has subkinding Type® < Type®:

id Int 42 : Int



F° Examples

id=A"a"™P 1°x%x VP o -«
F° has subkinding Type® < Type®:
id Int 42 : Int

Suppose we still have built-in session types, and omit the linearity
annotations on terms and types when it is e.

sendAndClose = Af""En9 1°x!M close (send (x, f)) : (Nnt.End) — Int —° ()



F . System F with Effect Handlers*

Kinds K ==
Value types AB:=a|A— C|Vak.C Type
Computation types C,D == A!'E Comp
Effect types E :={R} Effect
Row types Ru=¢:PR|p|- Row s
Presence types P:=Abs|A—»B|0 Presence
Handler types F:=C3D Handler
Types T:=A|R|P
Type contexts Fe=-|Ix:A
Kind contexts A= -|Aa:K

Values V,W u=x | Ax4.M | AaX.M
Computations M,N ==V W | VT | (return V) | (do £ V)E
| letx < M in N | handle M with H
Handlers H:={returnx— M} | {{pr— M} wH

“Hillerstrom, Lindley, and Atkey, “Effect handlers via generalised continuations”, 2020.



F ..+ F° is BROKEN
eff

Define M;N=let _ <« Min N.
Assuming a global channel f : End, we have:

() ! {Choose:()—Bool} () ' {Choose:()»Bool}=3() ! {}

handle (do Choose (); close f) with {Choose _ — rtrue;rfalse}

r
Bool— () ! {}
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F ..+ F° is BROKEN
eff

Define M;N=let _ <« Min N.
Assuming a global channel f : End, we have:

() ! {Choose:()—Bool} () ' {Choose:()»Bool}=3() ! {}

handle (do Choose (); close f) with {Choose _ — rtrue;rfalse}

’
Bool—() 1 {}
~> (rtrue;rfalse)[(A_.close f)/r]

= close f;close f

fis closed twice!



Fege + F° = F,

ff
Kinds K ==
Value types A B:=a|A—=Y C|V'aK.C TypeY
Computation types C,D :=A!E Comp
Effect types E := {R} Effect
Row types Ru=€:P;R|p|- Row?.
Presence types P:=Abs|A->YB|6 Presence’
Handler types F:=C3D Handler
Types T:=A|R|P
Label sets La=0|{t}w L
Linearity Yi=e|o
Type contexts Fe=-|Ix:A
Kind contexts A= -|Aa:K
Values V, W u=x | A¥xAM | AYaK.M
Computations M,N ==V W | VT | (return V) | (do £ V)E
| letx < M in N | handle M with H
Handlers H:={returnx—> M} | {{pr— M} wH

1



Fixing F .. + F°

It would be great to know that r should be a linear function:

() ! {Choose:()-»Bool} () ! {Choose:()»Bool}=3() ! {}

handle (do Choose ();close f) with {Choose _ [ r() g — rtrue;rfalse}
Bool—°() !



Fixing F .. + F°

We could look at the effect signature of Choose:

() ! {Choose:()-»°Bool} () ! {Choose:()»°Bool}=3() ! {}

handle (do Choose ();close f) with {Choose _ | r() 0 — rtrue;rfalse}
Bool—°()!



Fixing F .. + F°

Notice that close f uses a linear variable f:

() ! {Choose:()»°Bool} () ! {Choose:()»°Bool}=3() ! {}

handle (do Choose (); close f) with {Choose _

r — rtrue;rfalse}
f:EndeT Bool—°() ! {}
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() ! {Choose:()»°Bool} () ! {Choose:()»°Bool}=3() ! {}

handle (do Choose (); close f) with {Choose _
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f:EndeT Bool—°() ! {}

Core idea: add linearity annotations on effect signatures, and track the
linearity information while typing.



Fixing F .. + F°

Notice that close f uses a linear variable f:

() ! {Choose:()»°Bool} () ! {Choose:()»°Bool}=3() ! {}

handle (do Choose (); close f) with {Choose _

r — rtrue;rfalse}
f:EndeT Bool—°() ! {}

Core idea: add linearity annotations on effect signatures, and track the
linearity information while typing.

The linearity Y in Choose : () =Y Bool reflects control-flow linearity, i.e. the
usage restriction on its context / continuation.



Duality between value linearity and control-flow linearity

For vV : (A: TypeY), Y restricts the linearity of the value itself

- Y =0
- Vis guaranteed to be used linearly
- V may contain linear resources
- Y — e
- no guarantee on the usage of vV
- V must not contain linear resources
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Duality between value linearity and control-flow linearity

Fordo ¢V : Al {¢: A" »Y B}, Y restricts the linearity of its context

= Y =NE)
- tis guaranteed to be handled linearly
- £'s continuation may contain linear resources

- Y=o more restriction on its context

- no guarantee on the handling of ¢
- f's continuation must not contain linear resources

However, we cannot upcast £ : A” »° B’ to £ : A” »* B’ because it would break
the safety of handling.



Duality between value linearity and control-flow linearity

Instead, we can upcast the kind of row types.

For M : A'{(R: Rowg")}, Y restricts the linearity of its context

- Y =0
- operations in M are guaranteed to be handled linearly
- M'’s continuation may contain linear resources
- Y — e
- no guarantee on the handling of operations in M
- M’s continuation must not contain linear resources

more restriction on its context



Duality between value linearity and control-flow linearity

Instead, we can upcast the kind of row types.

For M : A'{(R: Rowg")}, Y restricts the linearity of its context

S Y =0
- operations in M are guaranteed to be handled linearly
- M's continuation may contain linear resources

- Y=o more restriction on its context

- no guarantee on the handling of operations in M
- M's continuation must not contain linear resources

FY <Y FY <Y FY <Y

’ ’ ’
Fe<o F TypeY < TypeY + Presence’ < Presence’ F ROWLY < RowLY



Tracking Control-Flow Linearity

The evaluation context tells us that continuations consist of only sequencing
and handling.

E-OP handle E[do ¢ V] with H ~> N[V/p, (Ay.handle E[return y]| with H)/r]
where ¢ ¢ bl(E) and (L pr— N) e H

Evaluation context & == [ ] | let x < & in N | handle & with H

14



Tracking Control-Flow Linearity

The evaluation context tells us that continuations consist of only sequencing
and handling.

E-OP handle E[do ¢ V] with H ~> N[V/p, (Ay.handle E[return y]| with H)/r]
where ¢ ¢ bl(E) and (L pr— N) e H

Evaluation context & == [ ] | let x < & in N | handle & with H

As deep handlers are always recursive, they cannot use any linear resource.

T-HANDLER
C=A'{(t: A »" B)sR}  D=B!{(&: PR}
H = {return x —» M} W {¢; p; ri — N;};

ArT:e AT,x:AFM:D  [AT,pi:Airi:Bi =Y D+ N;:DJ;
all types in T are unlimited

A;THH:C=3D

14



Tracking Control-Flow Linearity (Cont.)

Sequencing has a real influence on control-flow linearity.

We can make use of the kinding relation of row types:

T-SEQEQ
AT M :A{R} A;Tp,x : ArF N :B!'{R}
Ar (Tpx:A):Y A+ R:Row”
Y=o: (I3, x : A) may contain linear vars Y=o: Ronly contains lm.ealr ops (»°)
Y=e: (T;,x : A) only contains unlimited vars Y=e : R may contain unlimited ops (—»*)

AT+ Fletx «<— Min N : B! {R}

15



Sound, but not Precise Enough?

;- +do Choose () : () ' {R} - f:End + do Close f : () ' {R}
-+ (f:End):o -+ R : Rowg®

s f : End + do Choose ();do Close f : () ! {R}

16
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Sound, but not Precise Enough?

;- +do Choose () : () ' {R} - f:End + do Close f : () ' {R}
-+ (f:End):o -+ R : Rowg®

s f : End + do Choose ();do Close f : () ! {R}

R = {Choose : () -° Bool; Close : End —»° ()} is well-typed but too restrictive

R = {Choose : () —° Bool; Close : End —»* ()} is more precise but ill-typed

s+ Fdo Choose () : () '{R;} 5 f :End+ do Close f: () ' {Rz}
-+ (f:End):o -+ R; : Rowyp® R <R,

s f : End + do Choose ();do Close f : () ' {R,}

Ry = {Choose : () »° Bool}, R, = {Choose : () »° Bool;Close : End —»* ()}.

16



More Precise Typing Rule for Sequencing

T-SEQSUB
AT FM:A{R} ATy, x : AF N :B!'{Ry}
Ar (Tpx:A):Y  ArFR:Row! R <R,

A;I‘1+I‘gkletx%MinN:B!{R2}
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More Precise Typing Rule for Sequencing

T-SEQSUB
AT FM:A{R} ATy, x : AF N :B!'{Ry}
Ar (Tpx:A):Y  ArFR:Row! R <R,

A;I‘1+I‘gkletx%MinN:B!{R2}

Row subtyping relation m

Ry <Ry Ry <R3 Ry <Ry Ry
R3 Ny € :Abs;R; < t:P;Ry ¢:P;Ry <{:P;Ry

N

Ry

R<R R

N

Although it is folklore that row polymorphism can replace row subtyping to
some extent (especially for effect types), in settings like tracking control-flow
linearity, a combination of them is better.
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IfA;TEV :Aand A A:e then AFT e
Lemma (Unlimited operations are unlimited)

If AT FE[(do ¢ V)E] : Al {£: A’ - B,R} and ¢ ¢ bl(E), then there exists
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Fo. Metatheory

Standard progress and preservation.

Lemma (Unlimited values are unlimited)

IfA;TEV :Aand A A:e then AFT e

Lemma (Unlimited operations are unlimited)

If AT FE[(do ¢ V)E] : Al {£: A’ - B,R} and ¢ ¢ bl(E), then there exists
ArT =T+ st A+Ty:eand A;Ty,y: By - Ereturn y] : A {¢: A” -»° B’;R}.

By further defining a linearity-aware semantics, we can show that every
linear value is used exactly once during evaluation.

Theorem (Evaluation linearity)

If M is proper and M g«» N, then N is also proper and
Z(M)w Z(C)=Z(N)wZ(D).
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Challenges of F2, type inference:
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What about Type Inference ?

Challenges of F2, type inference:

- First-class polymorphism = prenex polymorphism
- Linear types and subkinding = qualified types (QUILL>)
- Row subtyping

>Morris, “The Best of Both Worlds: Linear Functional Programming without Compromise”, 2016.
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What about Type Inference ?

Challenges of F2, type inference:
- First-class polymorphism = prenex polymorphism
- Linear types and subkinding = qualified types (QuUILL?)
- Row subtyping = qualified types (ROSE®)

>Morris, “The Best of Both Worlds: Linear Functional Programming without Compromise”, 2016.
6Morris and McKinna, “Abstracting Extensible Data Types: Or, Rows by Any Other Name”, 2019.
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What about Type Inference ?

Challenges of F2, type inference:

- First-class polymorphism = prenex polymorphism
- Linear types and subkinding = qualified types (QuUILL®)
- Row subtyping = qualified types (ROSE®)

QS : A ML-style variant of F. based on qualified types with

- full type inference without any type annotations
- accurate tracking of control-flow linearity (even more accurate than FZ,)

>Morris, “The Best of Both Worlds: Linear Functional Programming without Compromise”, 2016.
6Morris and McKinna, “Abstracting Extensible Data Types: Or, Rows by Any Other Name”, 2019.

19



Future Work

» Shallow handlers:

- linear shallow handlers can also introduce linear resources into
continuations with a more complex behaviour than sequencing;
- not entirely sure how to track it most accurately.
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- Links supports first-class polymorphism using FreezeML’;
- non-trivial to extend FreezeML with qualified types.

"Emrich et al,, “FreezeML: Complete and Easy Type Inference for First-Class Polymorphism”, 2020.
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Future Work

» Shallow handlers:
- linear shallow handlers can also introduce linear resources into
continuations with a more complex behaviour than sequencing;
- not entirely sure how to track it most accurately.
> FreezeML(X):
- Links supports first-class polymorphism using FreezeML’;
- non-trivial to extend FreezeML with qualified types.
> Other classifications of effects:

- besides linear (=°) and unlimited effects (=*), our method can also be
used for other classifications, like algebraic effects vs. higher-order effects.

"Emrich et al,, “FreezeML: Complete and Easy Type Inference for First-Class Polymorphism”, 2020.

20



Thank you!

Kinds K
Type?
Comp
Effect
RowY.
Presence”

Handler

|Aa:K

x| AYxAM | AYeK M
VW | VT | (return V) | (do ¢ V)"

let x < Min N | handle M with H

{return x> M} | (£ pr> M} wH

More Precise Typing Rule for Sequencing

T-SeqSus
AT FM:ANR}  ATux:ArN:BI{R)
Av(Tpx:A):Y  ArR:Row’ R <R,

ATy + Tk letx — Min N : B {Ry}

Row subtyping relation

Ri =R, Ri <Ry

Ri<Rs <p  L:AbSRi<(:PiRy (PRI <(:PiRy

Although it is folklore that row polymorph can replace row subtyping to
some extent (especially for effect types), in settings like tracking control-flow
linearity, a combination of them is better.

Duality between value linearity and control-flow linearity

Instead, we can upcast the kind of row type.
For M: AL{(R: Rowy")}, Y restricts the linearity of its context
Y
- operations in M are guaranteed to be handled linearly
- M's continuation may contain linear resources

S Y=e more restriction on its context

- no guarantee on the handling of operations in M
- M's continuation must not contain linear resources

LYY LY <Y LY <Y
=

+ Type” < Type!” + Presence’ < Presence’ + Row? < Row "’

What about Type Inference ?

Challenges of FZ, type inference:

- First-class polymorphism = prenex polymorphism
- Linear types and subkinding = qualified types (QuiLL®)
- Row subtyping = qualified types (ROSE®)

Q: AML-style variant of F%, based on qualified types with

- full type inference without any type annotations
- accurate tracking of control-flow linearity (even more accurate than F,

SMorris, “The Best of Both Worlds: Linear Functional Programming without Compromise”, 2016.
SMorris and McKinna, "Abstracting Extensible Data Types: Or, Rows by Any Other Name”,




F°. Kinding Rules for Value Types

Kinding relation

FY <Y
Fe<o F TypeY < TypeY/
K-FUN , K-UPCAST
K-FORALL ArA:Type? A+T:K
K-TYVAR ’
Aa:K+C:Comp A+ C:Comp FK<K
Aa:Kra:K AI—VY(XK.C:TypeY Al—A—)YB:TypeY A+T:K'
Extend to contexts

- Y =o:T may contain linear variables (because of K-UPCAST)
- Y =e:T only contains unlimited variables

Context splitting| A+ T =11 + I

- Variables with unlimited types appear in both Iy and I,
- Variables with linear types only appear in one of them

21



F°. Kinding Rules for Other Types

K-Comp K-HANDLER
K-EFFECT ArA: TypeY ArC: Comp
AI—R:ROW% A+ E : Effect A+ D : Comp
A+ {R} : Effect A+ A!'E:Comp A+ C 3D : Handler
K-ABSENT K-PRESENT
A+ Abs : Presence? A+ A —>»Y B: Presence’

K-EXTENDROW
A+ P : Presence’ AFR: Rowzw{[}y

AF-:Row,Y AF€:P;R:RowyY

K-EMPTYROW

22



F. Metatheory (Cont.)

Definition (Properness)

A well-typed computation M or value V is proper if and only if,
1. for every sub-values W in it, if W has some type A which can be given
kind Type®, then (W) = 0;
2. for every sub-computation N of form E[do ¢ V]| where ¢ ¢ bl(&) in it, if N
has some effect type {¢£: A, »° B,;...}, then Z(&) = 0.
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Q¢ Qualified Types

Row types Ru=p|t:A—>»YB

Linearity Yu=¢|e]|o

Types tu=A|R|Y

Predicates o= 7 <1 | R @R, | RiOR; ~R

only compare linearity only compare label sets
Qualified types pu=A|7r=p
Type schemes o :=p | Va.o
Back to the “print then close” example:
do Print"42";do Close f :
YV gy do.((Print - ¢1) @ p, (Close : ¢po) @ u, File < ¢p1) = () ! {u}

As we know File is a linear type, we can further simplify it to:

do Print"42";do Close f : Y ¢.((Print : o) @ 1, (Close : p) @ ) = () ' {u}
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QZ; Typing Rules

Typing relation [P [T+ V: A|[P|T+M:C|[P|T+H:C3D)|

Q-HANDLER
H = {return x — M} W {& pi ri — Ni}i
Q-ABS D=B!{R)} P|T,x:ArM:D
PIT.x:ArM:C [P|T,p;i:Asri:Bi =Y D+ N;: D]
PrI<yY
“any type inIT” < Y PrT<e
Y =e:allvarsin T are unlimited all \{/{ars in T are unlimited
Y = o : essentially no restriction P= (£ : Aj »'* B;)i OR ~ Ry P = RRR,
Y = ¢ : collect the constraint in P combination of (¢); and R R, contains R
P|ITFIxM:A>Y C P|T+H:A!{R} = B! {Ry}
Q-SEQ
PITL,T+M:A'{Ry} P|TnT,x:Ar N:B!{Ry}
PrT'<e P= R QR Pr (Iy,x:A) <Ry
allvars in T are unlimited R, contains Ry “any type in (I, x : A)” < “any label in R,"

Ri=(t:Y);: [P+ (Dhx:A) <Yi);
R, = p: collect the constraint in P

P| T, I, THletx < Min N:B!{Ry}
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Q. Type Inference

Almost standard Hindley-Milner type inference with qualified types.

Metatheory: Standard soundness and completeness.

Theorem (Soundness)
IfO;T+V:A40,P% then 0’P | 0'(T|s) + V : 0’A. The same applies to
computation and handler typing.

Theorem (Completeness)

IfP|OT -V :A then ;T HV : A’ 46,0, and there exists §” such that
A=0"0'"A', P= 0"0'Q, and 0 = (0”0")|r. The same applies to computation
and handler typing.

Constraint solving? A seemingly correct graph algorithm for checking and
simplifying constraints.
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Qg More Example

Consider the following function:
AfA9.£0:90
The type inference of FZ.. infers the following principal type:

Vo ag i prz $1 2. (Pa < pia, p1 @ 1)
= () =% aH{um}) =° (0 > @z {p}) =° a2 {2}

While in Fg,

restrictive.

the subtyping relation p; < pz requires py = pp, which is more
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