
Effects, Linearity, and Modalities

Wenhao Tang
The University of Edinburgh

Programming Language Seminar, Peking University, 30th Aug 2024

Effects and Handlers

Computational Effects

Pure programs do not interact with their environment.

Effectful programs interact with their environment.

Effects are the way programs interact with their environment.

Effects are pervasive, including input/output, concurrency, exceptions, nondeterminism,
probability, etc.

Typically ad hoc and hard-wired in programming languages.

1

Computational Effects

Pure programs do not interact with their environment.

Effectful programs interact with their environment.

Effects are the way programs interact with their environment.

Effects are pervasive, including input/output, concurrency, exceptions, nondeterminism,
probability, etc.

Typically ad hoc and hard-wired in programming languages.

1

Computational Effects

Pure programs do not interact with their environment.

Effectful programs interact with their environment.

Effects are the way programs interact with their environment.

Effects are pervasive, including input/output, concurrency, exceptions, nondeterminism,
probability, etc.

Typically ad hoc and hard-wired in programming languages.

1

Computational Effects

Pure programs do not interact with their environment.

Effectful programs interact with their environment.

Effects are the way programs interact with their environment.

Effects are pervasive, including input/output, concurrency, exceptions, nondeterminism,
probability, etc.

Typically ad hoc and hard-wired in programming languages.

1

Computational Effects

Pure programs do not interact with their environment.

Effectful programs interact with their environment.

Effects are the way programs interact with their environment.

Effects are pervasive, including input/output, concurrency, exceptions, nondeterminism,
probability, etc.

Typically ad hoc and hard-wired in programming languages.

1

Algebraic Effects and Handlers

(One of) the most popular approaches to modelling effects in programming languages.

I Plotkin and Power, 2002, Notions of Computation determine Monads, FoSSaCS
I Plotkin and Power, 2003, Algebraic Operations and Generic Effects, Applied
Categorical Structures (journal version)

I Plotkin and Pretnar, 2009, Handlers of Algebraic Effects, ESOP
I Plotkin and Pretnar, 2013, Handling Algebraic Effects, LMCS (journal version)

For a detailed introduction to the history of computational effects, see the first part of
Nicolas Wu’s keynote Modular Higher-Order Effects at PADL’24.

2

https://www.youtube.com/watch?v=UseIDeSCsf0

Algebraic Effects and Handlers

(One of) the most popular approaches to modelling effects in programming languages.

I Plotkin and Power, 2002, Notions of Computation determine Monads, FoSSaCS
I Plotkin and Power, 2003, Algebraic Operations and Generic Effects, Applied
Categorical Structures (journal version)

I Plotkin and Pretnar, 2009, Handlers of Algebraic Effects, ESOP
I Plotkin and Pretnar, 2013, Handling Algebraic Effects, LMCS (journal version)

For a detailed introduction to the history of computational effects, see the first part of
Nicolas Wu’s keynote Modular Higher-Order Effects at PADL’24.

2

https://www.youtube.com/watch?v=UseIDeSCsf0

Algebraic Effects and Handlers

(One of) the most popular approaches to modelling effects in programming languages.

I Plotkin and Power, 2002, Notions of Computation determine Monads, FoSSaCS
I Plotkin and Power, 2003, Algebraic Operations and Generic Effects, Applied
Categorical Structures (journal version)

I Plotkin and Pretnar, 2009, Handlers of Algebraic Effects, ESOP
I Plotkin and Pretnar, 2013, Handling Algebraic Effects, LMCS (journal version)

For a detailed introduction to the history of computational effects, see the first part of
Nicolas Wu’s keynote Modular Higher-Order Effects at PADL’24.

2

https://www.youtube.com/watch?v=UseIDeSCsf0

Both Academic and Industrial Interest

Papers:
https://github.com/yallop/

effects-bibliography

Research languages:
I Eff
I Frank
I Effekt
I Helium

I Koka
I Links
I Flix

In Products:
I semantic (GitHub)
I React (Facebook)
I Pyro (Uber)

Libraries in almost all mainstream languages
even including C and C++.
Primitive supports in industrial languages (for
both user-defined effects and low-level features):
I OCaml
I Unison
I WebAssembly (ongoing)
I Cangjie (ongoing)

3

https://github.com/yallop/effects-bibliography
https://github.com/yallop/effects-bibliography

Both Academic and Industrial Interest

Papers:
https://github.com/yallop/

effects-bibliography

Research languages:
I Eff
I Frank
I Effekt
I Helium

I Koka
I Links
I Flix

In Products:
I semantic (GitHub)
I React (Facebook)
I Pyro (Uber)

Libraries in almost all mainstream languages
even including C and C++.
Primitive supports in industrial languages (for
both user-defined effects and low-level features):
I OCaml
I Unison
I WebAssembly (ongoing)
I Cangjie (ongoing)

3

https://github.com/yallop/effects-bibliography
https://github.com/yallop/effects-bibliography

Both Academic and Industrial Interest

Papers:
https://github.com/yallop/

effects-bibliography

Research languages:
I Eff
I Frank
I Effekt
I Helium

I Koka
I Links
I Flix

In Products:
I semantic (GitHub)
I React (Facebook)
I Pyro (Uber)

Libraries in almost all mainstream languages
even including C and C++.
Primitive supports in industrial languages (for
both user-defined effects and low-level features):
I OCaml
I Unison
I WebAssembly (ongoing)
I Cangjie (ongoing)

3

https://github.com/yallop/effects-bibliography
https://github.com/yallop/effects-bibliography

Both Academic and Industrial Interest

Papers:
https://github.com/yallop/

effects-bibliography

Research languages:
I Eff
I Frank
I Effekt
I Helium

I Koka
I Links
I Flix

In Products:
I semantic (GitHub)
I React (Facebook)
I Pyro (Uber)

Libraries in almost all mainstream languages
even including C and C++.

Primitive supports in industrial languages (for
both user-defined effects and low-level features):
I OCaml
I Unison
I WebAssembly (ongoing)
I Cangjie (ongoing)

3

https://github.com/yallop/effects-bibliography
https://github.com/yallop/effects-bibliography

Both Academic and Industrial Interest

Papers:
https://github.com/yallop/

effects-bibliography

Research languages:
I Eff
I Frank
I Effekt
I Helium

I Koka
I Links
I Flix

In Products:
I semantic (GitHub)
I React (Facebook)
I Pyro (Uber)

Libraries in almost all mainstream languages
even including C and C++.
Primitive supports in industrial languages (for
both user-defined effects and low-level features):
I OCaml
I Unison
I WebAssembly (ongoing)
I Cangjie (ongoing) 3

https://github.com/yallop/effects-bibliography
https://github.com/yallop/effects-bibliography

Algebraic Effects Specify Syntax

The key idea is to separate the syntax of effects from their semantics.

effect choose : 1 ⇒ Bool

pick (x, y) = if do choose () then x else y

prog _ = pick (pick (37, 6), 210)

choose ()

choose () 210

37 6

4

Algebraic Effects Specify Syntax

The key idea is to separate the syntax of effects from their semantics.
effect choose : 1 ⇒ Bool

pick (x, y) = if do choose () then x else y

prog _ = pick (pick (37, 6), 210)

choose ()

choose () 210

37 6

4

Algebraic Effects Specify Syntax

The key idea is to separate the syntax of effects from their semantics.
effect choose : 1 ⇒ Bool

pick (x, y) = if do choose () then x else y

prog _ = pick (pick (37, 6), 210)

choose ()

choose () 210

37 6

4

Algebraic Effects Specify Syntax

The key idea is to separate the syntax of effects from their semantics.
effect choose : 1 ⇒ Bool

pick (x, y) = if do choose () then x else y

prog _ = pick (pick (37, 6), 210)

choose ()

choose () 210

37 6

4

Algebraic Effects Specify Syntax

The key idea is to separate the syntax of effects from their semantics.
effect choose : 1 ⇒ Bool

pick (x, y) = if do choose () then x else y

prog _ = pick (pick (37, 6), 210)

choose ()

choose () 210

37 6
4

Effect Handlers Provide Semantics

all m = handle m () with

return x ⇒ [x]

choose _ r ⇒ r true +++ r false

choose () [37,6] +++ [210] = [37,6,210]

choose () 210 [37] +++ [6] = [37,6] [210]

37 6 [37] [6]

all

5

Effect Handlers Provide Semantics

all m = handle m () with

return x ⇒ [x]

choose _ r ⇒ r true +++ r false

choose () [37,6] +++ [210] = [37,6,210]

choose () 210 [37] +++ [6] = [37,6] [210]

37 6 [37] [6]

all

5

Different Semantics without Changing Syntax

first m = handle m () with # first prog { 37

return x ⇒ x

choose _ r ⇒ r true

last m = handle m () with # last prog { 210

return x ⇒ x

choose _ r ⇒ r false

minimum m = handle m () with # minimum prog { 6

return x ⇒ x

choose _ r ⇒ min (r true) (r false)

maximum m = handle m () with # maximum prog { 210

return x ⇒ x

choose _ r ⇒ max (r true) (r false)

6

Different Semantics without Changing Syntax

first m = handle m () with # first prog { 37

return x ⇒ x

choose _ r ⇒ r true

last m = handle m () with # last prog { 210

return x ⇒ x

choose _ r ⇒ r false

minimum m = handle m () with # minimum prog { 6

return x ⇒ x

choose _ r ⇒ min (r true) (r false)

maximum m = handle m () with # maximum prog { 210

return x ⇒ x

choose _ r ⇒ max (r true) (r false)

6

Different Semantics without Changing Syntax

first m = handle m () with # first prog { 37

return x ⇒ x

choose _ r ⇒ r true

last m = handle m () with # last prog { 210

return x ⇒ x

choose _ r ⇒ r false

minimum m = handle m () with # minimum prog { 6

return x ⇒ x

choose _ r ⇒ min (r true) (r false)

maximum m = handle m () with # maximum prog { 210

return x ⇒ x

choose _ r ⇒ max (r true) (r false)

6

Different Semantics without Changing Syntax

first m = handle m () with # first prog { 37

return x ⇒ x

choose _ r ⇒ r true

last m = handle m () with # last prog { 210

return x ⇒ x

choose _ r ⇒ r false

minimum m = handle m () with # minimum prog { 6

return x ⇒ x

choose _ r ⇒ min (r true) (r false)

maximum m = handle m () with # maximum prog { 210

return x ⇒ x

choose _ r ⇒ max (r true) (r false)
6

Composable Syntax and Semantics

effect ask : 1 ⇒ Int

prog' _ = pick (pick (37, 6), do ask ()) # composable syntax

answer m = handle m () with

ask _ r ⇒ r 21

choose () choose () max 37 21 = 37

choose () ask () choose () 21 max 37 6 = 37 21

37 6 37 6 37 6

answer maximum

composable semantics

7

Composable Syntax and Semantics

effect ask : 1 ⇒ Int

prog' _ = pick (pick (37, 6), do ask ()) # composable syntax

answer m = handle m () with

ask _ r ⇒ r 21

choose () choose () max 37 21 = 37

choose () ask () choose () 21 max 37 6 = 37 21

37 6 37 6 37 6

answer maximum

composable semantics

7

Composable Syntax and Semantics

effect ask : 1 ⇒ Int

prog' _ = pick (pick (37, 6), do ask ()) # composable syntax

answer m = handle m () with

ask _ r ⇒ r 21

choose () choose () max 37 21 = 37

choose () ask () choose () 21 max 37 6 = 37 21

37 6 37 6 37 6

answer maximum

composable semantics

7

Composable Syntax and Semantics

effect ask : 1 ⇒ Int

prog' _ = pick (pick (37, 6), do ask ()) # composable syntax

answer m = handle m () with

ask _ r ⇒ r 21

choose () choose () max 37 21 = 37

choose () ask () choose () 21 max 37 6 = 37 21

37 6 37 6 37 6

answer maximum

composable semantics
7

Different Points of View to Algebraic Effects and Handlers

I Modelling effects (ad hoc built-in effects, monads, monad transformers):
composable and customisable effects interpretation in direct style.

I Control idioms (goto, if-then-else, call/cc, shift/reset):
a structured approach to programming with delimited continuations.

I Programmers familiar with exceptions and try-catch:
restorable exception / try-catch with continuations.

I OOP programmers:
(augmented) interfaces and implementations of objects

I Haskell programmers:
freemonads and their algebras / folds / catamorphisms

I Coq programmers:
(roughly) interaction trees

8

Different Points of View to Algebraic Effects and Handlers

I Modelling effects (ad hoc built-in effects, monads, monad transformers):
composable and customisable effects interpretation in direct style.

I Control idioms (goto, if-then-else, call/cc, shift/reset):
a structured approach to programming with delimited continuations.

I Programmers familiar with exceptions and try-catch:
restorable exception / try-catch with continuations.

I OOP programmers:
(augmented) interfaces and implementations of objects

I Haskell programmers:
freemonads and their algebras / folds / catamorphisms

I Coq programmers:
(roughly) interaction trees

8

Different Points of View to Algebraic Effects and Handlers

I Modelling effects (ad hoc built-in effects, monads, monad transformers):
composable and customisable effects interpretation in direct style.

I Control idioms (goto, if-then-else, call/cc, shift/reset):
a structured approach to programming with delimited continuations.

I Programmers familiar with exceptions and try-catch:
restorable exception / try-catch with continuations.

I OOP programmers:
(augmented) interfaces and implementations of objects

I Haskell programmers:
freemonads and their algebras / folds / catamorphisms

I Coq programmers:
(roughly) interaction trees

8

Different Points of View to Algebraic Effects and Handlers

I Modelling effects (ad hoc built-in effects, monads, monad transformers):
composable and customisable effects interpretation in direct style.

I Control idioms (goto, if-then-else, call/cc, shift/reset):
a structured approach to programming with delimited continuations.

I Programmers familiar with exceptions and try-catch:
restorable exception / try-catch with continuations.

I OOP programmers:
(augmented) interfaces and implementations of objects

I Haskell programmers:
freemonads and their algebras / folds / catamorphisms

I Coq programmers:
(roughly) interaction trees

8

Different Points of View to Algebraic Effects and Handlers

I Modelling effects (ad hoc built-in effects, monads, monad transformers):
composable and customisable effects interpretation in direct style.

I Control idioms (goto, if-then-else, call/cc, shift/reset):
a structured approach to programming with delimited continuations.

I Programmers familiar with exceptions and try-catch:
restorable exception / try-catch with continuations.

I OOP programmers:
(augmented) interfaces and implementations of objects

I Haskell programmers:
freemonads and their algebras / folds / catamorphisms

I Coq programmers:
(roughly) interaction trees

8

Effect Systems

The type system is usually extended with an effect system which statically tracks the
effects that a program may use when running.

Traditional effect systems attach effect types to function arrows.

pick : ∀ a . (a, a)
choose−−−−−−→ a

pick (x, y) = if do choose () then x else y

prog : 1
choose, ask−−−−−−−−−−→ Int

prog _ = pick (pick (37, 6), do ask ())

all : ∀ a . (1
choose−−−−−−→ a) → List a # handles choose

answer : ∀ a . (1
ask−−−→ a) → a # handles ask

9

Effect Systems

The type system is usually extended with an effect system which statically tracks the
effects that a program may use when running.

Traditional effect systems attach effect types to function arrows.

pick : ∀ a . (a, a)
choose−−−−−−→ a

pick (x, y) = if do choose () then x else y

prog : 1
choose, ask−−−−−−−−−−→ Int

prog _ = pick (pick (37, 6), do ask ())

all : ∀ a . (1
choose−−−−−−→ a) → List a # handles choose

answer : ∀ a . (1
ask−−−→ a) → a # handles ask

9

Effect Systems

The type system is usually extended with an effect system which statically tracks the
effects that a program may use when running.

Traditional effect systems attach effect types to function arrows.

pick : ∀ a . (a, a)
choose−−−−−−→ a

pick (x, y) = if do choose () then x else y

prog : 1
choose, ask−−−−−−−−−−→ Int

prog _ = pick (pick (37, 6), do ask ())

all : ∀ a . (1
choose−−−−−−→ a) → List a # handles choose

answer : ∀ a . (1
ask−−−→ a) → a # handles ask

9

Effect Systems

The type system is usually extended with an effect system which statically tracks the
effects that a program may use when running.

Traditional effect systems attach effect types to function arrows.

pick : ∀ a . (a, a)
choose−−−−−−→ a

pick (x, y) = if do choose () then x else y

prog : 1
choose, ask−−−−−−−−−−→ Int

prog _ = pick (pick (37, 6), do ask ())

all : ∀ a . (1
choose−−−−−−→ a) → List a # handles choose

answer : ∀ a . (1
ask−−−→ a) → a # handles ask

9

Effect Systems

The type system is usually extended with an effect system which statically tracks the
effects that a program may use when running.

Traditional effect systems attach effect types to function arrows.

pick : ∀ a . (a, a)
choose−−−−−−→ a

pick (x, y) = if do choose () then x else y

prog : 1
choose, ask−−−−−−−−−−→ Int

prog _ = pick (pick (37, 6), do ask ())

all : ∀ a . (1
choose−−−−−−→ a) → List a # handles choose

answer : ∀ a . (1
ask−−−→ a) → a # handles ask

9

Effect Systems

The type system is usually extended with an effect system which statically tracks the
effects that a program may use when running.

Traditional effect systems attach effect types to function arrows.

pick : ∀ a . (a, a)
choose−−−−−−→ a

pick (x, y) = if do choose () then x else y

prog : 1
choose, ask−−−−−−−−−−→ Int

prog _ = pick (pick (37, 6), do ask ())

all : ∀ a . (1
choose−−−−−−→ a) → List a # handles choose

answer : ∀ a . (1
ask−−−→ a) → a # handles ask

9

Effect Polymorphism

The types for all and answer are not composable!

both : ∀ a . (1
ask, choose−−−−−−−−−−→ a) → a

both m = all {answer m} # {.....} is short for (fun () →)

❎ Type error: answer expects a function of type 1
ask−−−→ a,

while m has type 1
ask, choose−−−−−−−−−−→ a.

The conventional solution is effect polymorphism, which introduces effect variables to
quantify over other potential effects.

answer : ∀ a e . (1
ask, e−−−−−−→ a)

e−→ a

Instantiating e with choose gives a compatible type

(1
ask, choose−−−−−−−−−−→ a)

choose−−−−−−→ a

10

Effect Polymorphism

The types for all and answer are not composable!

both : ∀ a . (1
ask, choose−−−−−−−−−−→ a) → a

both m = all {answer m} # {.....} is short for (fun () →)

❎ Type error: answer expects a function of type 1
ask−−−→ a,

while m has type 1
ask, choose−−−−−−−−−−→ a.

The conventional solution is effect polymorphism, which introduces effect variables to
quantify over other potential effects.

answer : ∀ a e . (1
ask, e−−−−−−→ a)

e−→ a

Instantiating e with choose gives a compatible type

(1
ask, choose−−−−−−−−−−→ a)

choose−−−−−−→ a

10

Effect Polymorphism

The types for all and answer are not composable!

both : ∀ a . (1
ask, choose−−−−−−−−−−→ a) → a

both m = all {answer m} # {.....} is short for (fun () →)

❎ Type error: answer expects a function of type 1
ask−−−→ a,

while m has type 1
ask, choose−−−−−−−−−−→ a.

The conventional solution is effect polymorphism, which introduces effect variables to
quantify over other potential effects.

answer : ∀ a e . (1
ask, e−−−−−−→ a)

e−→ a

Instantiating e with choose gives a compatible type

(1
ask, choose−−−−−−−−−−→ a)

choose−−−−−−→ a

10

Effect Polymorphism

The types for all and answer are not composable!

both : ∀ a . (1
ask, choose−−−−−−−−−−→ a) → a

both m = all {answer m} # {.....} is short for (fun () →)

❎ Type error: answer expects a function of type 1
ask−−−→ a,

while m has type 1
ask, choose−−−−−−−−−−→ a.

The conventional solution is effect polymorphism, which introduces effect variables to
quantify over other potential effects.

answer : ∀ a e . (1
ask, e−−−−−−→ a)

e−→ a

Instantiating e with choose gives a compatible type

(1
ask, choose−−−−−−−−−−→ a)

choose−−−−−−→ a

10

Effect Polymorphism

We also need to make other types effect polymorphic.

pick : ∀ a e . (a, a)
choose, e−−−−−−−−−→ a

prog : ∀ e . 1
choose, ask, e−−−−−−−−−−−−−→ Int

all : ∀ a e . (1
choose, e−−−−−−−−−→ a)

e−→ List a

answer : ∀ a e . (1
ask, e−−−−−−→ a)

e−→ a

both : ∀ a e . (1
ask, choose, e−−−−−−−−−−−−−→ a)

e−→ a

Including existing “pure” functions like

map : ∀ a b e . (a
e−→ b, List a)

e−→ List b

Works well with ML-style type inference via row polymorphism as in Koka and Links.

11

Effect Polymorphism

We also need to make other types effect polymorphic.

pick : ∀ a e . (a, a)
choose, e−−−−−−−−−→ a

prog : ∀ e . 1
choose, ask, e−−−−−−−−−−−−−→ Int

all : ∀ a e . (1
choose, e−−−−−−−−−→ a)

e−→ List a

answer : ∀ a e . (1
ask, e−−−−−−→ a)

e−→ a

both : ∀ a e . (1
ask, choose, e−−−−−−−−−−−−−→ a)

e−→ a

Including existing “pure” functions like

map : ∀ a b e . (a
e−→ b, List a)

e−→ List b

Works well with ML-style type inference via row polymorphism as in Koka and Links.

11

More Examples: Generators

effect yield : Int ⇒ 1

asList : ∀ e . (1
yield, e
−−−−−−−−→ 1)

e−→ List Int

asList m = handle m () with

return () ⇒ nil

yield x r ⇒ cons x (r ())

gen : ∀ e . List Int
yield, e
−−−−−−−−→ 1

gen xs = map (fun x → do yield x) xs; ()

> asList (gen [3,1,4,1,5,9])

[3,1,4,1,5,9]

12

States

effect get : 1 ⇒ Int

effect put : Int ⇒ 1

state : ∀ a . (1
get, put, e
−−−−−−−−−−→ a)

e−→ Int
e−→ (a, Int)

state m = handle m () with

return x ⇒ fun s → (x, s)

get () r ⇒ fun s → r s s

put s' r ⇒ fun s → r () s'

prefixSum : ∀ e . List Int
get, put, yield, e
−−−−−−−−−−−−−−−−−→ 1

prefixSum xs = map (fun x → do put (do get + x); do yield (do get)) xs; ()

> asList (fun () →
state (fun () → prefixSum [3,1,4,1,5,9]) 0; ())

[3,4,8,9,14,23]

13

States

effect get : 1 ⇒ Int

effect put : Int ⇒ 1

state : ∀ a . (1
get, put, e
−−−−−−−−−−→ a)

e−→ Int
e−→ (a, Int)

state m = handle m () with

return x ⇒ fun s → (x, s)

get () r ⇒ fun s → r s s

put s' r ⇒ fun s → r () s'

prefixSum : ∀ e . List Int
get, put, yield, e
−−−−−−−−−−−−−−−−−→ 1

prefixSum xs = map (fun x → do put (do get + x); do yield (do get)) xs; ()

> asList (fun () →
state (fun () → prefixSum [3,1,4,1,5,9]) 0; ())

[3,4,8,9,14,23]

13

States

effect get : 1 ⇒ Int

effect put : Int ⇒ 1

state : ∀ a . (1
get, put, e
−−−−−−−−−−→ a)

e−→ Int
e−→ (a, Int)

state m = handle m () with

return x ⇒ fun s → (x, s)

get () r ⇒ fun s → r s s

put s' r ⇒ fun s → r () s'

prefixSum : ∀ e . List Int
get, put, yield, e
−−−−−−−−−−−−−−−−−→ 1

prefixSum xs = map (fun x → do put (do get + x); do yield (do get)) xs; ()

> asList (fun () →
state (fun () → prefixSum [3,1,4,1,5,9]) 0; ())

[3,4,8,9,14,23] 13

Linearity and Control-Flow Linearity

Linear Resources

Some of the best things in life are free; and some are not. (Philip Wadler, A
taste of linear logic, 1993)

Linear resources must be used exactly once.

I File handles.
I (Session-typed) communication channels.
I Network connections.
I Memory management (affine).

14

Linear Resources

Some of the best things in life are free; and some are not. (Philip Wadler, A
taste of linear logic, 1993)

Linear resources must be used exactly once.

I File handles.
I (Session-typed) communication channels.
I Network connections.
I Memory management (affine).

14

Linear Types

Linear types, derived from Girard’s linear logic via Curry-Howard correspondence, ensure
the linearity of certain resources statically.

writer : File → String (1

writer f s = let f' = write f s in close f'

writer' : File → String (1

writer' f s = let f' = write f s in close f'; write f s

❎ Type error: f has a linear type File but is used twice.

writer'' : File → String → 1

writer'' f s = let f' = write f s in close f'

❎ Type error: f has a linear type File but is captured in

a non-linear function of type String ->- 1.

15

Linear Types

Linear types, derived from Girard’s linear logic via Curry-Howard correspondence, ensure
the linearity of certain resources statically.

writer : File → String (1

writer f s = let f' = write f s in close f'

writer' : File → String (1

writer' f s = let f' = write f s in close f'; write f s

❎ Type error: f has a linear type File but is used twice.

writer'' : File → String → 1

writer'' f s = let f' = write f s in close f'

❎ Type error: f has a linear type File but is captured in

a non-linear function of type String ->- 1.

15

Linear Types

Linear types, derived from Girard’s linear logic via Curry-Howard correspondence, ensure
the linearity of certain resources statically.

writer : File → String (1

writer f s = let f' = write f s in close f'

writer' : File → String (1

writer' f s = let f' = write f s in close f'; write f s

❎ Type error: f has a linear type File but is used twice.

writer'' : File → String → 1

writer'' f s = let f' = write f s in close f'

❎ Type error: f has a linear type File but is captured in

a non-linear function of type String ->- 1.

15

Linear Types

Linear types, derived from Girard’s linear logic via Curry-Howard correspondence, ensure
the linearity of certain resources statically.

writer : File → String (1

writer f s = let f' = write f s in close f'

writer' : File → String (1

writer' f s = let f' = write f s in close f'; write f s

❎ Type error: f has a linear type File but is used twice.

writer'' : File → String → 1

writer'' f s = let f' = write f s in close f'

❎ Type error: f has a linear type File but is captured in

a non-linear function of type String ->- 1.

15

(Multi-Shot) Effect Handlers Break Linear Types

dubiousWriter : File
Choose−−−−−−→ 1

dubiousWriter f = let f' = write f (pick "6" "37") in close f'

> all (fun () → dubiousWriter (open "file.txt"))

❎ Runtime error: write to a non-existing file handle.

choose ()

f' = write f "6" f' = write f "37"

close f' close f'

Conventional linear type systems only track value linearity; they assume continuations
are used linearly. However, effect handlers enable more flexible uses of continuations.

16

(Multi-Shot) Effect Handlers Break Linear Types

dubiousWriter : File
Choose−−−−−−→ 1

dubiousWriter f = let f' = write f (pick "6" "37") in close f'

> all (fun () → dubiousWriter (open "file.txt"))

❎ Runtime error: write to a non-existing file handle.

choose ()

f' = write f "6" f' = write f "37"

close f' close f'

Conventional linear type systems only track value linearity; they assume continuations
are used linearly. However, effect handlers enable more flexible uses of continuations.

16

(Multi-Shot) Effect Handlers Break Linear Types

dubiousWriter : File
Choose−−−−−−→ 1

dubiousWriter f = let f' = write f (pick "6" "37") in close f'

> all (fun () → dubiousWriter (open "file.txt"))

❎ Runtime error: write to a non-existing file handle.

choose ()

f' = write f "6" f' = write f "37"

close f' close f'

Conventional linear type systems only track value linearity; they assume continuations
are used linearly. However, effect handlers enable more flexible uses of continuations.

16

(Multi-Shot) Effect Handlers Break Linear Types

dubiousWriter : File
Choose−−−−−−→ 1

dubiousWriter f = let f' = write f (pick "6" "37") in close f'

> all (fun () → dubiousWriter (open "file.txt"))

❎ Runtime error: write to a non-existing file handle.

choose ()

f' = write f "6" f' = write f "37"

close f' close f'

Conventional linear type systems only track value linearity; they assume continuations
are used linearly. However, effect handlers enable more flexible uses of continuations.

16

Tracking Control-Flow Linearity

Classify operations into two categories:

I Control-flow-linear operation — its continuation must be resumed exactly once.
I Control-flow-unlimited operation — its continuation can be resumed any times.

dubiousWriter : File
choose:◦−−−−−−−→ 1

dubiousWriter f = let f' = write f (pick "6" "37") in close f'

> all (fun () → dubiousWriter (open "file.txt"))

❎ Type error: choose is control-flow linear but resumed twice in all.

> first (fun () → dubiousWriter (open "file.txt"))

[()] # "6" is written

17

Tracking Control-Flow Linearity

Classify operations into two categories:

I Control-flow-linear operation — its continuation must be resumed exactly once.
I Control-flow-unlimited operation — its continuation can be resumed any times.

dubiousWriter : File
choose:◦−−−−−−−→ 1

dubiousWriter f = let f' = write f (pick "6" "37") in close f'

> all (fun () → dubiousWriter (open "file.txt"))

❎ Type error: choose is control-flow linear but resumed twice in all.

> first (fun () → dubiousWriter (open "file.txt"))

[()] # "6" is written

17

Tracking Control-Flow Linearity

Classify operations into two categories:

I Control-flow-linear operation — its continuation must be resumed exactly once.
I Control-flow-unlimited operation — its continuation can be resumed any times.

dubiousWriter : File
choose:◦−−−−−−−→ 1

dubiousWriter f = let f' = write f (pick "6" "37") in close f'

> all (fun () → dubiousWriter (open "file.txt"))

❎ Type error: choose is control-flow linear but resumed twice in all.

> first (fun () → dubiousWriter (open "file.txt"))

[()] # "6" is written

17

Tracking Control-Flow Linearity

Classify operations into two categories:

I Control-flow-linear operation — its continuation must be resumed exactly once.
I Control-flow-unlimited operation — its continuation can be resumed any times.

dubiousWriter : File
choose:◦−−−−−−−→ 1

dubiousWriter f = let f' = write f (pick "6" "37") in close f'

> all (fun () → dubiousWriter (open "file.txt"))

❎ Type error: choose is control-flow linear but resumed twice in all.

> first (fun () → dubiousWriter (open "file.txt"))

[()] # "6" is written

17

More in the Paper

I have omitted all details.

Two calculi which track control-flow linearity in the paper:

F◦eff : A system F-style core calculus with subkinding-based linear types
and row-based effect types. Requires syntactic overheads.

Q◦
eff : An ML-style calculus with linear and effect types both based on qualified types.

Infers principal types with no extra annotation.

paper blog post 18

Modal Effect Types

Verbosity of Conventional Effect Types

Effect polymorphism requires annotating almost all function arrows with effect variables.

gen : ∀ e . List Int
yield, e
−−−−−−−−→ 1

asList : ∀ e . (1
yield, e
−−−−−−−−→ 1)

e−→ List Int

Even for innocent higher-order functions which do not use or handle effects at all.

map : ∀ a b e . (a
e−→ b, List a)

e−→ List b

This verbosity severely hinders the adoption of effect systems in industrial languages:
signatures of much existing library code must be rewritten no matter whether they use
effects or not.

19

Verbosity of Conventional Effect Types

Effect polymorphism requires annotating almost all function arrows with effect variables.

gen : ∀ e . List Int
yield, e
−−−−−−−−→ 1

asList : ∀ e . (1
yield, e
−−−−−−−−→ 1)

e−→ List Int

Even for innocent higher-order functions which do not use or handle effects at all.

map : ∀ a b e . (a
e−→ b, List a)

e−→ List b

This verbosity severely hinders the adoption of effect systems in industrial languages:
signatures of much existing library code must be rewritten no matter whether they use
effects or not.

19

Verbosity of Conventional Effect Types

Effect polymorphism requires annotating almost all function arrows with effect variables.

gen : ∀ e . List Int
yield, e
−−−−−−−−→ 1

asList : ∀ e . (1
yield, e
−−−−−−−−→ 1)

e−→ List Int

Even for innocent higher-order functions which do not use or handle effects at all.

map : ∀ a b e . (a
e−→ b, List a)

e−→ List b

This verbosity severely hinders the adoption of effect systems in industrial languages:
signatures of much existing library code must be rewritten no matter whether they use
effects or not.

19

Invisible Effect Polymorphism

Key observation of the Frank language: for higher-order functions the effect variables
almost always match up because we typically use the function arguments.

➡️ omit effect variables when they are the same one.

gen : List Int
yield
−−−−−→ 1

asList : (1
yield
−−−−−→ 1) → List Int

map : ∀ a b e . (a → b, List a) → List b

are syntactic sugar for

gen : ∀ e . List Int
yield, e
−−−−−−−−→ 1

asList : ∀ e . (1
yield, e
−−−−−−−−→ 1)

e−→ List Int

map : ∀ a b e . (a
e−→ b, List a)

e−→ List b

20

Invisible Effect Polymorphism

Key observation of the Frank language: for higher-order functions the effect variables
almost always match up because we typically use the function arguments.

➡️ omit effect variables when they are the same one.

gen : List Int
yield
−−−−−→ 1

asList : (1
yield
−−−−−→ 1) → List Int

map : ∀ a b e . (a → b, List a) → List b

are syntactic sugar for

gen : ∀ e . List Int
yield, e
−−−−−−−−→ 1

asList : ∀ e . (1
yield, e
−−−−−−−−→ 1)

e−→ List Int

map : ∀ a b e . (a
e−→ b, List a)

e−→ List b

20

Drawbacks of Using Syntactic Sugar

I Non-trivial mental programming model — programmers still need to understand
effect polymorphism and reason about code by mentally desugaring.

I Broken syntactic abstraction — explicit effect variables may still appear in error
messages and intermediate information provided by language server protocols.

A syntactical abstraction is neither satisfying from a theoretical point of view — is there a
more fundamental system that captures the intuition of invisible effect polymorphism?

21

Drawbacks of Using Syntactic Sugar

I Non-trivial mental programming model — programmers still need to understand
effect polymorphism and reason about code by mentally desugaring.

I Broken syntactic abstraction — explicit effect variables may still appear in error
messages and intermediate information provided by language server protocols.

A syntactical abstraction is neither satisfying from a theoretical point of view — is there a
more fundamental system that captures the intuition of invisible effect polymorphism?

21

Drawbacks of Using Syntactic Sugar

I Non-trivial mental programming model — programmers still need to understand
effect polymorphism and reason about code by mentally desugaring.

I Broken syntactic abstraction — explicit effect variables may still appear in error
messages and intermediate information provided by language server protocols.

A syntactical abstraction is neither satisfying from a theoretical point of view — is there a
more fundamental system that captures the intuition of invisible effect polymorphism?

21

Effect Contexts

Managing effectful computations is about managing open terms. (Leo White)

Variables in the context ↔️ Operations in the effect context
Programs can use any variables

from the context
↔️ Programs can use any operations

from the effect context

map : ∀ a b . (a → b, List a) → List b

This map can be applied to any effectful functions. Both the parameter and result
functions can use any effects from the context.

Everything still works even after currying map.
map : ∀ a b . (a → b) → List a → List b

HOAS: use bindings of the meta-lang to encode both variable and effect bindings.

22

Effect Contexts

Managing effectful computations is about managing open terms. (Leo White)

Variables in the context ↔️ Operations in the effect context
Programs can use any variables

from the context
↔️ Programs can use any operations

from the effect context

map : ∀ a b . (a → b, List a) → List b

This map can be applied to any effectful functions. Both the parameter and result
functions can use any effects from the context.

Everything still works even after currying map.
map : ∀ a b . (a → b) → List a → List b

HOAS: use bindings of the meta-lang to encode both variable and effect bindings.

22

Effect Contexts

Managing effectful computations is about managing open terms. (Leo White)

Variables in the context ↔️ Operations in the effect context
Programs can use any variables

from the context
↔️ Programs can use any operations

from the effect context

map : ∀ a b . (a → b, List a) → List b

This map can be applied to any effectful functions. Both the parameter and result
functions can use any effects from the context.

Everything still works even after currying map.
map : ∀ a b . (a → b) → List a → List b

HOAS: use bindings of the meta-lang to encode both variable and effect bindings.

22

Effect Contexts

Managing effectful computations is about managing open terms. (Leo White)

Variables in the context ↔️ Operations in the effect context
Programs can use any variables

from the context
↔️ Programs can use any operations

from the effect context

map : ∀ a b . (a → b, List a) → List b

This map can be applied to any effectful functions. Both the parameter and result
functions can use any effects from the context.

Everything still works even after currying map.
map : ∀ a b . (a → b) → List a → List b

HOAS: use bindings of the meta-lang to encode both variable and effect bindings.

22

Effect Contexts

Managing effectful computations is about managing open terms. (Leo White)

Variables in the context ↔️ Operations in the effect context
Programs can use any variables

from the context
↔️ Programs can use any operations

from the effect context

map : ∀ a b . (a → b, List a) → List b

This map can be applied to any effectful functions. Both the parameter and result
functions can use any effects from the context.

Everything still works even after currying map.
map : ∀ a b . (a → b) → List a → List b

HOAS: use bindings of the meta-lang to encode both variable and effect bindings.

22

Effect Contexts

Managing effectful computations is about managing open terms. (Leo White)

Variables in the context ↔️ Operations in the effect context
Programs can use any variables

from the context
↔️ Programs can use any operations

from the effect context

map : ∀ a b . (a → b, List a) → List b

This map can be applied to any effectful functions. Both the parameter and result
functions can use any effects from the context.

Everything still works even after currying map.
map : ∀ a b . (a → b) → List a → List b

HOAS: use bindings of the meta-lang to encode both variable and effect bindings.
22

Being in Scope❎➡️ Being Used

Effect safety requires purity as a precondition. That is, if the effect system claims the
global program does not use any effects, then there is no unhandled effect when running.

Pure programs may still introduce effects but not use them.
effect yield : Int ⇒ 1

main : 1 → Int

main () = 6 + 37

Typing judgements have form
Γ ` " : � @�

As usual, contexts Γ and � are not visible to programmes.

For the typing judgement of main, � is empty.

23

Being in Scope❎➡️ Being Used

Effect safety requires purity as a precondition. That is, if the effect system claims the
global program does not use any effects, then there is no unhandled effect when running.

Pure programs may still introduce effects but not use them.

effect yield : Int ⇒ 1

main : 1 → Int

main () = 6 + 37

Typing judgements have form
Γ ` " : � @�

As usual, contexts Γ and � are not visible to programmes.

For the typing judgement of main, � is empty.

23

Being in Scope❎➡️ Being Used

Effect safety requires purity as a precondition. That is, if the effect system claims the
global program does not use any effects, then there is no unhandled effect when running.

Pure programs may still introduce effects but not use them.
effect yield : Int ⇒ 1

main : 1 → Int

main () = 6 + 37

Typing judgements have form
Γ ` " : � @�

As usual, contexts Γ and � are not visible to programmes.

For the typing judgement of main, � is empty.

23

Being in Scope❎➡️ Being Used

Effect safety requires purity as a precondition. That is, if the effect system claims the
global program does not use any effects, then there is no unhandled effect when running.

Pure programs may still introduce effects but not use them.
effect yield : Int ⇒ 1

main : 1 → Int

main () = 6 + 37

Typing judgements have form
Γ ` " : � @�

As usual, contexts Γ and � are not visible to programmes.

For the typing judgement of main, � is empty.

23

Being in Scope❎➡️ Being Used

Effect safety requires purity as a precondition. That is, if the effect system claims the
global program does not use any effects, then there is no unhandled effect when running.

Pure programs may still introduce effects but not use them.
effect yield : Int ⇒ 1

main : 1 → Int

main () = 6 + 37

Typing judgements have form
Γ ` " : � @�

As usual, contexts Γ and � are not visible to programmes.

For the typing judgement of main, � is empty.
23

Absolute Modalities

How do programmers specify that main is pure?

main : 1 → Int

is shorthand for
main : [](1 → Int)

An absolute modality specifies an effect context.

All global programs are implicitly boxed with [].
map : ∀ a b . []((a → b, List a) → List b)

gen : [yield](List Int → 1)

gen xs = map (fun x → do yield x) xs; ()

Similar to contextual modal types.

24

Absolute Modalities

How do programmers specify that main is pure?
main : 1 → Int

is shorthand for
main : [](1 → Int)

An absolute modality specifies an effect context.

All global programs are implicitly boxed with [].
map : ∀ a b . []((a → b, List a) → List b)

gen : [yield](List Int → 1)

gen xs = map (fun x → do yield x) xs; ()

Similar to contextual modal types.

24

Absolute Modalities

How do programmers specify that main is pure?
main : 1 → Int

is shorthand for
main : [](1 → Int)

An absolute modality specifies an effect context.

All global programs are implicitly boxed with [].
map : ∀ a b . []((a → b, List a) → List b)

gen : [yield](List Int → 1)

gen xs = map (fun x → do yield x) xs; ()

Similar to contextual modal types.

24

Absolute Modalities

How do programmers specify that main is pure?
main : 1 → Int

is shorthand for
main : [](1 → Int)

An absolute modality specifies an effect context.

All global programs are implicitly boxed with [].
map : ∀ a b . []((a → b, List a) → List b)

gen : [yield](List Int → 1)

gen xs = map (fun x → do yield x) xs; ()

Similar to contextual modal types.

24

Absolute Modalities

How do programmers specify that main is pure?
main : 1 → Int

is shorthand for
main : [](1 → Int)

An absolute modality specifies an effect context.

All global programs are implicitly boxed with [].
map : ∀ a b . []((a → b, List a) → List b)

gen : [yield](List Int → 1)

gen xs = map (fun x → do yield x) xs; ()

Similar to contextual modal types.
24

Typing Handlers

Our approach so far is (more or less) a reminiscent of HOAS + contextual modal types.

How to give types to handlers?

asList : ∀ e . (1
yield, e
−−−−−−−−→ 1)

e−→ List Int

asList m = handle m () with

return () ⇒ nil

yield x r ⇒ cons x (r ())

Effect handlers modify effect contexts! The parameter of asList is in a different effect
context from the top-level one (extended with yield)!

Using absolute modalities to specify their differences would be too verbose:
asList : ∀ e . [e]([yield, e](1 → 1) → List Int)

25

Typing Handlers

Our approach so far is (more or less) a reminiscent of HOAS + contextual modal types.

How to give types to handlers?

asList : ∀ e . (1
yield, e
−−−−−−−−→ 1)

e−→ List Int

asList m = handle m () with

return () ⇒ nil

yield x r ⇒ cons x (r ())

Effect handlers modify effect contexts! The parameter of asList is in a different effect
context from the top-level one (extended with yield)!

Using absolute modalities to specify their differences would be too verbose:
asList : ∀ e . [e]([yield, e](1 → 1) → List Int)

25

Typing Handlers

Our approach so far is (more or less) a reminiscent of HOAS + contextual modal types.

How to give types to handlers?

asList : ∀ e . (1
yield, e
−−−−−−−−→ 1)

e−→ List Int

asList m = handle m () with

return () ⇒ nil

yield x r ⇒ cons x (r ())

Effect handlers modify effect contexts! The parameter of asList is in a different effect
context from the top-level one (extended with yield)!

Using absolute modalities to specify their differences would be too verbose:
asList : ∀ e . [e]([yield, e](1 → 1) → List Int)

25

Typing Handlers

Our approach so far is (more or less) a reminiscent of HOAS + contextual modal types.

How to give types to handlers?

asList : ∀ e . (1
yield, e
−−−−−−−−→ 1)

e−→ List Int

asList m = handle m () with

return () ⇒ nil

yield x r ⇒ cons x (r ())

Effect handlers modify effect contexts! The parameter of asList is in a different effect
context from the top-level one (extended with yield)!

Using absolute modalities to specify their differences would be too verbose:
asList : ∀ e . [e]([yield, e](1 → 1) → List Int)

25

Relative Modalities

A relative modality specifies a local change to an effect context.

asList : <yield>(1 → 1) → List Int

The extension modality <yield> extends the effect context with the yield operation.

The parameter <yield>(1 → 1) can still use any other effects from the top-level context.

We also have mask modalities <L> which remove effects L from the effect context.

Relative modalities have the general form <L|D> where L and D are effects.

26

Relative Modalities

A relative modality specifies a local change to an effect context.

asList : <yield>(1 → 1) → List Int

The extension modality <yield> extends the effect context with the yield operation.

The parameter <yield>(1 → 1) can still use any other effects from the top-level context.

We also have mask modalities <L> which remove effects L from the effect context.

Relative modalities have the general form <L|D> where L and D are effects.

26

Relative Modalities

A relative modality specifies a local change to an effect context.

asList : <yield>(1 → 1) → List Int

The extension modality <yield> extends the effect context with the yield operation.

The parameter <yield>(1 → 1) can still use any other effects from the top-level context.

We also have mask modalities <L> which remove effects L from the effect context.

Relative modalities have the general form <L|D> where L and D are effects.

26

Relative Modalities

A relative modality specifies a local change to an effect context.

asList : <yield>(1 → 1) → List Int

The extension modality <yield> extends the effect context with the yield operation.

The parameter <yield>(1 → 1) can still use any other effects from the top-level context.

We also have mask modalities <L> which remove effects L from the effect context.

Relative modalities have the general form <L|D> where L and D are effects.

26

Relative Modalities

A relative modality specifies a local change to an effect context.

asList : <yield>(1 → 1) → List Int

The extension modality <yield> extends the effect context with the yield operation.

The parameter <yield>(1 → 1) can still use any other effects from the top-level context.

We also have mask modalities <L> which remove effects L from the effect context.

Relative modalities have the general form <L|D> where L and D are effects.

26

Escaping Handlers

What type should we give to answer?
answer m = handle m () with

ask () r ⇒ r 21

We cannot give type ∀ a . <ask>(1 → a) → a to it!
foo : 1 → Int

foo = answer (fun _ → do ask) # ask escapes from handler scope

> foo ()

❎ Runtime error: ask is used but not handled

Instead, the typing rule always wraps the return type of handlers with extension
modalities of the operations they handle.

answer : ∀ a . <ask>(1 → a) → <ask>a

27

Escaping Handlers

What type should we give to answer?
answer m = handle m () with

ask () r ⇒ r 21

We cannot give type ∀ a . <ask>(1 → a) → a to it!
foo : 1 → Int

foo = answer (fun _ → do ask) # ask escapes from handler scope

> foo ()

❎ Runtime error: ask is used but not handled

Instead, the typing rule always wraps the return type of handlers with extension
modalities of the operations they handle.

answer : ∀ a . <ask>(1 → a) → <ask>a

27

Escaping Handlers

What type should we give to answer?
answer m = handle m () with

ask () r ⇒ r 21

We cannot give type ∀ a . <ask>(1 → a) → a to it!
foo : 1 → Int

foo = answer (fun _ → do ask) # ask escapes from handler scope

> foo ()

❎ Runtime error: ask is used but not handled

Instead, the typing rule always wraps the return type of handlers with extension
modalities of the operations they handle.

answer : ∀ a . <ask>(1 → a) → <ask>a

27

Absolute Kinds

Recall that we directly have
asList : <yield>(1 → 1) → List Int

instead of
asList : <yield>(1 → 1) → <yield>(List Int)

This is sound because the unit type cannot carry any escaped operation.

In general we introduce a kind system with subkinding Abs 6 Any where

I values of type A : Abs do not rely on the ambient effect context, and
I values of type A : Any may use / capture effects from the ambient effect context.
1 : Abs Int : Abs [yield](1 → 1) : Abs (Bool, String) : Abs

Generalise to polymorphic types naturally
answer : ∀ [a] . <ask>(1 → a) → a # short for ∀ a : Abs

28

Absolute Kinds

Recall that we directly have
asList : <yield>(1 → 1) → List Int

instead of
asList : <yield>(1 → 1) → <yield>(List Int)

This is sound because the unit type cannot carry any escaped operation.

In general we introduce a kind system with subkinding Abs 6 Any where

I values of type A : Abs do not rely on the ambient effect context, and
I values of type A : Any may use / capture effects from the ambient effect context.

1 : Abs Int : Abs [yield](1 → 1) : Abs (Bool, String) : Abs

Generalise to polymorphic types naturally
answer : ∀ [a] . <ask>(1 → a) → a # short for ∀ a : Abs

28

Absolute Kinds

Recall that we directly have
asList : <yield>(1 → 1) → List Int

instead of
asList : <yield>(1 → 1) → <yield>(List Int)

This is sound because the unit type cannot carry any escaped operation.

In general we introduce a kind system with subkinding Abs 6 Any where

I values of type A : Abs do not rely on the ambient effect context, and
I values of type A : Any may use / capture effects from the ambient effect context.
1 : Abs Int : Abs [yield](1 → 1) : Abs (Bool, String) : Abs

Generalise to polymorphic types naturally
answer : ∀ [a] . <ask>(1 → a) → a # short for ∀ a : Abs

28

Absolute Kinds

Recall that we directly have
asList : <yield>(1 → 1) → List Int

instead of
asList : <yield>(1 → 1) → <yield>(List Int)

This is sound because the unit type cannot carry any escaped operation.

In general we introduce a kind system with subkinding Abs 6 Any where

I values of type A : Abs do not rely on the ambient effect context, and
I values of type A : Any may use / capture effects from the ambient effect context.
1 : Abs Int : Abs [yield](1 → 1) : Abs (Bool, String) : Abs

Generalise to polymorphic types naturally
answer : ∀ [a] . <ask>(1 → a) → a # short for ∀ a : Abs 28

Modular Effectful Programming with Modal Effect Types

> asList <yield>(fun () → gen [3,1,4,1,5,9])

[3,1,4,1,5,9] : List Int

> asList <yield>(fun () →
state <get,put>(fun () → gen' [3,1,4,1,5,9]) 0; ())

[3,4,8,9,14,23] : List Int

Unfortunately, my type inference cannot infer all modality introduction🥲.

29

Comparing with the Syntactic Sugar

For most common types they give similar results.

1
choose, ask−−−−−−−−−−→ Int

∀ a . (1
choose−−−−−−→ a) → List a

∀ a . (1
ask−−−→ a) → a

∀ a b . (a → b, List a) → List b

[choose, ask](1 → Int)

∀ [a] . <choose>(1 → a) → List a

∀ [a] . <ask>(1 → a) → a

∀ a b . (a → b, List a) → List b

The contextual reading could give better types in some cases.

1
choose, ask−−−−−−−−−−→ 1

choose, ask−−−−−−−−−−→ 1

1
choose−−−−−−→ 1

choose, ask−−−−−−−−−−→ 1

∀ f . (∀ e . (1
ask, e−−−−−−→ 1)

e−→ 1)
f−→ 1

[choose, ask](1 → 1 → 1)

[choose](1 → <ask>(1 → 1))

[](<ask>(1 → 1) → 1) → 1

Check out our preprint for a formal compositional encoding from left to right.

30

Comparing with the Syntactic Sugar

For most common types they give similar results.

1
choose, ask−−−−−−−−−−→ Int

∀ a . (1
choose−−−−−−→ a) → List a

∀ a . (1
ask−−−→ a) → a

∀ a b . (a → b, List a) → List b

[choose, ask](1 → Int)

∀ [a] . <choose>(1 → a) → List a

∀ [a] . <ask>(1 → a) → a

∀ a b . (a → b, List a) → List b

The contextual reading could give better types in some cases.

1
choose, ask−−−−−−−−−−→ 1

choose, ask−−−−−−−−−−→ 1

1
choose−−−−−−→ 1

choose, ask−−−−−−−−−−→ 1

∀ f . (∀ e . (1
ask, e−−−−−−→ 1)

e−→ 1)
f−→ 1

[choose, ask](1 → 1 → 1)

[choose](1 → <ask>(1 → 1))

[](<ask>(1 → 1) → 1) → 1

Check out our preprint for a formal compositional encoding from left to right.
30

One More Example: Re-generating

Process all generated numbers with a function.

regen : [yield]((Int → Int) → <yield>(1 → 1) → 1)

regen f m = handle m () with

return () ⇒ ()

yield s r ⇒ do yield (f s); r ()

In contrast, conventional effect systems (e.g., the one used in Koka) usually give

regen : ∀ e . (Int
yield, e
−−−−−−−−→ Int)

e−→ (1
yield, yield, e
−−−−−−−−−−−−−−→ 1)

yield, e
−−−−−−−−→ 1

31

One More Example: Re-generating

Process all generated numbers with a function.

regen : [yield]((Int → Int) → <yield>(1 → 1) → 1)

regen f m = handle m () with

return () ⇒ ()

yield s r ⇒ do yield (f s); r ()

In contrast, conventional effect systems (e.g., the one used in Koka) usually give

regen : ∀ e . (Int
yield, e
−−−−−−−−→ Int)

e−→ (1
yield, yield, e
−−−−−−−−−−−−−−→ 1)

yield, e
−−−−−−−−→ 1

31

Cooperative Concurrency

data Proc = proc (List Proc → ())

push : ∀ a . a → List a → List a

push x xs = xs +++ cons x nil

next : List Proc → ()

next q = case q of

nil → ()

cons (proc p) ps → p ps

schedule : <ufork, suspend>(1 → 1) → List Proc → 1

schedule m = handle m () with

return () ⇒ fun q → next q

suspend () r ⇒ fun q → next (push (proc (r ())) q)

ufork () r ⇒ fun q → r true (push (proc (r false)) q)

32

Theoretical Foundation: (Simply) Multimodal Type Theory

Modal effect types have a solid theoretical foundation based on (the simply-typed
fragment) of multimodal type theory, a dependent type theory parameterised by a mode
theory, which specifies the structure of modes, modalities, and their transformations.

33

More in the Paper

Met: A core calculus following simple multimodal type theory.
Encoding a fragment of conventional effect types into Met

Mete: Extension with effect variables.
Metel: A surface language with sound and complete type inference.

https://arxiv.org/abs/2407.11816

34

https://arxiv.org/abs/2407.11816

	Effects and Handlers
	Linearity and Control-Flow Linearity
	Modal Effect Types

