
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Freezing Bidirectional Typing (Extended Abstract)∗
Wenhao Tang

wenhao.tang@ed.ac.uk
The University of
Edinburgh, UK

Shengyi Jiang
syjiang@cs.hku.hk

The University of Hong
Kong, China

Bruno C. d. S. Oliveira
bruno@cs.hku.hk

The University of Hong
Kong, China

Sam Lindley
sam.lindley@ed.ac.uk
The University of
Edinburgh, UK

Abstract
We propose Frost, a novel approach to bidirectional type
inference for first-class polymorphism. Conventional bidi-
rectional typing usually considers unidirectional information
flow between functions and arguments, typically from the
former to the latter. Frost allows local type information to
flow back and forth between functions and arguments via
pattern inference. A freezing operator is used to control the
direction of information flow when there is no best choice.
The flexible information flow of Frost enables expressive
and predictable inference of polymorphic instantiation and
implicit type abstraction. We conjecture that Frost admits a
simple, sound and complete type inference algorithm and
generalizes to type inference for modal types.

Keywords: first-class polymorphism, bidirectional typing

1 Introduction
ML-style type inference [5, 17] has enjoyed great success in
programming languages for inferring rank-1 polymorphic
types without any user annotations including type abstrac-
tion and instantiation. Nonetheless, polymorphic types are
treated as second-class, since quantifiers must be top-level
and instantiated with monomorphic types. Many approaches
to type inference for first-class polymorphism, which allows
quantifiers to appear anywhere and be instantiated with
polymorphic types, have been proposed in the past thirty
years [1, 10, 11, 14–16, 18, 20, 21]. These approaches make
different trade-offs between user-provided annotations, pre-
dictability, and complexity of the type inference algorithms.
However, first-class polymorphism still remains one of the
most challenging problems of type inference.

Bidirectional typing [6, 7, 13, 19, 26] for higher-rank poly-
morphism (which allows quantifiers to appear anywhere but
restricts instantiation to monomorphic types) has enjoyed
great success. Key to this success is the property that when re-
stricting to monomorphic instantiation, we can easily guess
monotypes and solve them via unification. There are two
modes in bidirectional typing: a checking mode which checks
a term against an input type, and a synthesis mode which
synthesises an output type from a term. The local type infor-
mation provided by the checking mode helps with inferring
implicit type abstraction and polymorphic arguments.

We start from the observation that local type information
also provides valuable guidance on polymorphic instantiation

∗This is an extended abstract for the ML family workshop 2025.

for first-class polymorphism. However, traditional bidirec-
tional type systems place rather severe restrictions on the
flow of local type information. We extend bidirectional typ-
ing with expressive information flow and a freezing operator
to control flow directions inspired by FreezeML [10]. We
propose Frost1, a novel type system for first-class polymor-
phism based on bidirectional typing. Frost follows the prin-
ciple shared by many existing systems that polymorphism
should never be guessed. Frost only instantiates a type with
a polymorphic type when the local type information requires
such a type; otherwise it guesses a monomorphic type.
Local type information in Frost mainly serves three pur-

poses: implicit type abstraction, polymorphic arguments,
and polymorphic instantiation. However, theses purposes
typically require different directions of information flow be-
tween functions and arguments. Consider the application
𝑀 𝑁 . When type information flows from 𝑀 to 𝑁 , we can
type check 𝑁 and infer potential implicit type abstraction.
When type information flows from 𝑁 to𝑀 , we can instan-
tiate 𝑀 with the information provided by 𝑁 . To support
both directions simultaneously, we first infer a pattern for
the argument 𝑁 . A pattern is a type skeleton with holes
and only provides the type information independent of the
surrounding context. That is, no matter where a term is, its
type must be consistent with its pattern. The pattern of 𝑁
always flows to𝑀 before the type information provided by
𝑀 flows back to 𝑁 . To control which information flows from
arguments to functions, we introduce a term-level freezing
operator. Freezing a term makes its type independent of the
surrounding context and thus can be collected in patterns
and used for synthesising the type of other terms.

In summary, Frost has the following main advantages.
• Predictability. Frost has a clear declarative presentation.
• Simplicity. Frost does not require new type syntax and
admits a sound and complete algorithmic type system
with simple constraint solving (work in progress).

• Expressiveness. Compared to QuickLook [20], which also
uses local type information for first-class polymorphism,
the pattern inference and freezing of Frost enable more
fine-grained control over local information flow, allowing
more programs to be synthesised and checked.

The remainder of this extended abstract gives an overview of
Frost with examples and illustrative typing rules. For space
reasons, we do not discuss the specification of Frost in this

1Frost forms when vapour flows to cold surfaces and freezes into ice crystals.
1

https://orcid.org/0009-0000-6589-3821
https://orcid.org/0000-0002-4443-0753
https://orcid.org/0000-0002-1846-7210
https://orcid.org/0000-0002-1360-4714

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

Wenhao Tang, Shengyi Jiang, Bruno C. d. S. Oliveira, and Sam Lindley

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

extended abstract. Frost is still work in progress. We are
working on formalising the type inference algorithm and
proving its soundness and completeness. We also plan to ex-
tend Frost to type inference for modal effect types, inferring
implicit modality introduction and elimination [23].

2 Frost
2.1 Flowing from Functions to Arguments
Most bidirectional type systems [4, 7, 8, 12, 27] infer the
type of the function first, instantiate the type, and use its
argument types to type check each argument. The local type
information flows from functions to arguments as illustrated
in the following informal rule.

FunToArg
Γ ⊢ 𝑀 ⇒ 𝐴 𝐴 ⪯ 𝐴1 → 𝐵 Γ ⊢ 𝑁 ⇐ 𝐴1

Γ ⊢ 𝑀 𝑁 ⇒ 𝐵

Wewrite⇒ for synthesis mode and⇐ for checking mode.
We write 𝐴 ⪯ 𝐵 if 𝐴 can be instantiated to 𝐵. As a result,
the argument 𝑁 is in checking mode, allowing us to infer an
implicit type abstraction for it. When 𝑁 is a lambda 𝜆𝑥.𝑁 ′,
the checking mode also gives us the type of the parameter 𝑥 .
For instance, consider the function application poly (𝜆𝑥 .𝑥)
where poly : (∀𝑎.𝑎 → 𝑎) → Int. Using the argument type
∀𝑎.𝑎 → 𝑎 of poly to type check 𝜆𝑥.𝑥 , we can infer that there
is an implicit type abstraction Λ𝑎 wrapping the argument
𝜆𝑥.𝑥 , and the parameter 𝑥 should have type 𝑎.

Frost supports the information flow from functions to ar-
guments. However, only having this direction of information
flow is not enough as we have no guidance when we need
to instantiate the function type. Previous systems adopting
this rule solely mitigate the problem by adopting unifica-
tion [4, 7, 12, 27] on top of the bidirectional typing to allow
undirectional information flow. However, since arbitrary im-
plicit polymorphic instantiation is undecidable [3, 24], they
only consider predicative higher-rank polymorphism where
instantiation is restricted to monomorphic types, In contrast,
Frost enables implicit polymorphic instantiation by allowing
selective reversal of the direction of information flow.

2.2 Flowing from Arguments to Functions
Local type inference [19] supports inferring argument types
first and using these types to guide the typing of a function
as illustrated in the following informal rule.

ArgToFun
Γ ⊢ 𝑁 ⇒ 𝐴1 Γ ⊢ 𝑀 ⇒ 𝐴

𝐴 ⪯ 𝐴1 → 𝐵 guided by argument type 𝐴1

Γ ⊢ 𝑀 𝑁 ⇒ 𝐵

When the function has a polymorphic type, the type infor-
mation from arguments provides useful guidance on how we
should instantiate the polymorphic function type, especially
enabling polymorphic instantiation. For instance, consider
the application head ids where head : ∀𝑎.List 𝑎 → 𝑎 and
ids : List (∀𝑎.𝑎 → 𝑎). We know that the first argument

type List 𝑎 of head should match the type of ids. Thus, 𝑎
should be instantiated to the polymorphic type ∀𝑎.𝑎 → 𝑎.

The information flow from arguments to functions is also
useful for assigning types to parameters of unannotated
lambda abstractions. For example, consider inferring the type
of the application (𝜆𝑥.𝑥) ids. It is clear that the parameter 𝑥
should have exactly the type of the argument ids. However,
the ArgToFun rule is not powerful enough to cover this case.
Xie and Oliveira [26] propose a special application mode
Γ | Ψ ⊢ 𝑀 ⇒ 𝐴 which extends synthesis mode with a
context Ψ collecting the types of arguments that𝑀 is applied
to. When an application𝑀 𝑁 is encountered, the type of the
argument 𝑁 is first inferred and added to Ψ when typing𝑀
as illustrated by the following rule.

LetArgGoFirst [26]
Γ | Ψ ⊢ 𝑁 ⇒ 𝐴 Γ | 𝐴 ,Ψ ⊢ 𝑀 ⇒ 𝐴 → 𝐵

Γ | Ψ ⊢ 𝑀 𝑁 ⇒ 𝐵

Their system supports examples like (𝜆𝑥.𝑥) ids but does
not support polymorphic instantiation.

Frost supports information flow from arguments to func-
tions and uses it for both polymorphic instantiation and
assigning types to parameters of unannotated lambda ab-
stractions. In fact, similarly to application mode, the typing
judgement of Frost has the form Γ | 𝜌 ⊢ 𝑀 ⇒ 𝐴. The main
difference is that 𝜌 does not contain types for arguments but
their patterns, the key feature that enables Frost to support
both directions of information flow simultaneously.

2.3 Flowing Back and Forth via Patterns
Naively having both directions of information flow in Sec-
tions 2.1 and 2.2 would require backtracking, which is unre-
alistic for practical type inference. Instead of backtracking or
relying on ad-hoc heuristics, Frost supports both directions
of information flow by first collecting pattern information
from arguments, then inferring the function type guided by
the pattern information, and finally using the argument types
of the inferred function type to type check each argument.
The typing rule for application in Frost is as follows.

T-App
Γ ⊢ 𝑁 ⇒⇒ 𝑃

Γ | 𝑃 , 𝜌 ⊢ 𝑀 ⇒ 𝐴 → 𝐵 Γ ⊢ 𝑁 ⇐ 𝐴

Γ | 𝜌 ⊢ 𝑀 𝑁 ⇒ 𝐵

The pattern inference judgement Γ ⊢ 𝑁 ⇒⇒ 𝑃 infers a
pattern 𝑃 for a term 𝑁 under context Γ. We add this pat-
tern 𝑃 to the pattern row 𝜌 when inferring the type of 𝑀 ,
similar to the LetArgGoFirst rule. Finally we type check
the argument 𝑁 , similar to the FunToArg rule. A pattern
is a type with holes (for which we use the ghost symbol)
representing unknown information. We say that two pat-
terns are consistent if they are equivalent modulo unknown
information [22]. If 𝑁 has pattern 𝑃 , every type 𝑁 must be
consistent with the pattern 𝑃 . Formally, if Γ ⊢ 𝑁 ⇒⇒ 𝑃 , then
for any type 𝐴 such that Γ ⊢ 𝑁 ⇐ 𝐴, we have that 𝐴 is

2

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Freezing Bidirectional Typing (Extended Abstract)

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

consistent with 𝑃 . In other words, the pattern 𝑃 gives the
type information provided by 𝑁 independently of where 𝑁
is and which information the context provides.

For instance, the term 𝜆𝑥 .𝑥 has pattern ∀ . → , which
covers any function type with an arbitrary number of top-
level quantifiers.2 As another example, the term ids has
pattern ∀ .List (∀𝑎.𝑎 → 𝑎). The ∀ . reflects potential
implicit type abstraction of ids. Note that as with many
other systems for first-class polymorphism, we only care
about shallow instantiation [2] where the polymorphic type
∀𝑎.𝑎 → 𝑎 inside List cannot be instantiated.

Back to the example poly (𝜆𝑥 .𝑥) in Section 2.1. The pat-
tern ∀ . → of 𝜆𝑥 .𝑥 does not contribute to the typing of
poly but is harmless since it is consistent with ∀𝑎.𝑎 → 𝑎.
Back to the example head ids in Section 2.2, what really

flows from ids to head is not the type of ids but its pattern
∀ .List (∀𝑎.𝑎 → 𝑎). We still know that we should instanti-
ate head with ∀𝑎.𝑎 → 𝑎 because the argument type List 𝑎
must be consistent with the pattern ∀ .List (∀𝑎.𝑎 → 𝑎).
The above examples essentially only use one direction

of information flow. We give another example which uses
both directions of information flow. Consider a higher-rank
polymorphic function poly′ : ∀𝑎.(∀𝑏.𝑏 → 𝑏 × 𝑎) → 𝑎.
Frost infers the type List (∀𝑎.𝑎 → 𝑎) for the application
poly′ (𝜆𝑥.(𝑥, ids)). First, the pattern information ∀ . →
×(∀ .List (∀𝑎.𝑎 → 𝑎)) of the argument 𝜆𝑥 .(𝑥, ids) flows

to poly′. This information tells the function to instantiate 𝑎
to List (∀𝑎.𝑎 → 𝑎). After instantiation, we get the argument
type ∀𝑏.𝑏 → 𝑏 × List (∀𝑎.𝑎 → 𝑎), which we use to type
check the argument 𝜆𝑥.(𝑥, ids) and infers that there should
be an implicit type abstraction Λ𝑏.

2.4 Freezing Flow
Sometimes the pattern is not as informative as we want. For
instance, consider the application single id where single :
∀𝑎.𝑎 → List 𝑎. For the argument id, the most precise pat-
tern information we could collect is ∀ . → because
of implicit instantiation and type abstraction. This pattern
information does not tell us anything useful for polymor-
phic instantiation of single. In this case Frost would just
guess a monotype consistent with ∀ . → to instantiate
𝑎 and finally infer List (𝜏 → 𝜏) with some monotype 𝜏 for
single id. This is unsatisfying as List (∀𝑎.𝑎 → 𝑎) is also
a perfectly reasonable type for single id which even more
precisely reflects the point that each element in the list is
itself a polymorphic function. Inferring this type requires
more information from id to flow to the function single

and guides its instantiation.
We introduce a term-level freezing operator to control the

directions of information flow.When a term is frozen, its type
is what we infer from it and cannot depend on the surround-
ing context. As a result, we can directly use the inferred type
2Unlike dynamic types in gradual typing, our ghosts not only appear as
types but also appear as ∀ . which matches any number of quantifiers.

as its pattern without considering potential implicit type ab-
straction and instantiation. In other words, previously for a
term there are inward and outward information flows, while
freezing a term fixes the direction to outward only. Back to
the example of single id, we could freeze id by writing
⌈id⌉. Frost infers the type List (∀𝑎.𝑎 → 𝑎) for single ⌈id⌉.
As another example, given fint : (Int → Int) → Int,
the application fint ⌈id⌉ is ill-typed because freezing id

disables instantiation.
Freezing naturally propagates through program structures

such as let-bindings, bodies of lambda abstractions, and
data constructors. For instance, Frost still infers the type
List (∀𝑎.𝑎 → 𝑎) for single (let 𝑥 = 42 in ⌈id⌉).

2.5 More Examples
Since Frost collects patterns of arguments in the typing
judgement, information from multiple arguments can be
used in together to guide polymorphic instantiations. For
instance, given choose : ∀𝑎.𝑎 → 𝑎 → 𝑎, Frost infers the
type (∀𝑎.𝑎 → 𝑎) × (∀𝑎.𝑎 → 𝑎) for the following term.

choose (𝜆𝑥 .𝑥, ⌈id⌉) (⌈id⌉, 𝜆𝑥 .𝑥)
For the same reason of collecting argument patterns, Frost
is not sensitive to 𝜂-expansion. For instance, 𝜂-expanding
choose in the above term does not prevent Frost from infer-
ring the type (∀𝑎.𝑎 → 𝑎) × (∀𝑎.𝑎 → 𝑎).

Frost allows instantiation to happen after each step of ap-
plication. For instance, Frost infers type Int for head ids 42.
After the first application head idswe get the type∀𝑎.𝑎 → 𝑎,
which is instantiated with Int before the second application.

Frost also allows information to flow from one argument
to another argument by using the function as a bridge. Con-
sider the application choose ⌈id⌉ (𝜆𝑥 .𝑥). Frost infers that
there is an implicit type abstraction for 𝜆𝑥 .𝑥 . The informa-
tion flows from the first argument to choose and then to
the second argument. Frost is not sensitive to the order of
arguments and still works for choose (𝜆𝑥.𝑥) ⌈id⌉.
Frost adopts the ML value restriction [25]: implicit type ab-

straction is only allowed for values. For instance, poly (id id)
is ill-typed because id id is not a value. We can make it well-
typed by freezing: poly (id ⌈id⌉). Now id ⌈id⌉ directly
gives the type ∀𝑎.𝑎 → 𝑎 without implicit type abstraction.
A more thorough demonstration of Frost can be found

in Appendix A including both positive and negative ones,
comparing against QuickLook [20], GI [21], HMF [15], and
FreezeML [10].Most examples are from Serrano et al. [20, 21],
with some new examples demonstrating Frost’s advantage
on handling bidirectional information flow.

References
[1] Didier Le Botlan and Didier Rémy. 2003. MLF: raising ML to the power

of system F. In Proceedings of the Eighth ACM SIGPLAN International
Conference on Functional Programming, ICFP 2003, Uppsala, Sweden,
August 25-29, 2003, Colin Runciman and Olin Shivers (Eds.). ACM,
27–38. doi:10.1145/944705.944709

3

https://doi.org/10.1145/944705.944709

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

Wenhao Tang, Shengyi Jiang, Bruno C. d. S. Oliveira, and Sam Lindley

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

[2] Gert-Jan Bottu and Richard A. Eisenberg. 2021. Seeking stability by be-
ing lazy and shallow: lazy and shallow instantiation is user friendly. In
Haskell 2021: Proceedings of the 14th ACM SIGPLAN International Sym-
posium on Haskell, Virtual Event, Korea, August 26-27, 2021, Jurriaan
Hage (Ed.). ACM, 85–97. doi:10.1145/3471874.3472985

[3] Jacek Chrząszcz. 1998. Polymorphic subtyping without distributivity.
In Mathematical Foundations of Computer Science 1998, Luboš Brim,
Jozef Gruska, and Jiří Zlatuška (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 346–355.

[4] Chen Cui, Shengyi Jiang, and Bruno C. d. S. Oliveira. 2023. Greedy Im-
plicit Bounded Quantification. Proc. ACM Program. Lang. 7, OOPSLA2
(2023), 2083–2111. doi:10.1145/3622871

[5] Luis Damas and Robin Milner. 1982. Principal Type-Schemes for
Functional Programs. In Proceedings of the 9th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (Albuquerque,
New Mexico) (POPL ’82). Association for Computing Machinery, New
York, NY, USA, 207–212. doi:10.1145/582153.582176

[6] Jana Dunfield and Neel Krishnaswami. 2022. Bidirectional Typing.
ACM Comput. Surv. 54, 5 (2022), 98:1–98:38. doi:10.1145/3450952

[7] Jana Dunfield and Neelakantan R. Krishnaswami. 2013. Complete and
easy bidirectional typechecking for higher-rank polymorphism. In
ACM SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA - September 25 - 27, 2013, Greg Morrisett and
Tarmo Uustalu (Eds.). ACM, 429–442. doi:10.1145/2500365.2500582

[8] Jana Dunfield and Frank Pfenning. 2004. Tridirectional typecheck-
ing. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2004, Venice, Italy, Janu-
ary 14-16, 2004, Neil D. Jones and Xavier Leroy (Eds.). ACM, 281–292.
doi:10.1145/964001.964025

[9] Frank Emrich. 2024. Complete and easy type Inference for first-class
polymorphism. Ph. D. Dissertation. The University of Edinburgh, UK.
doi:10.7488/era/4152

[10] Frank Emrich, Sam Lindley, Jan Stolarek, James Cheney, and Jonathan
Coates. 2020. FreezeML: complete and easy type inference for first-
class polymorphism. In Proceedings of the 41st ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementa-
tion, PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson
and Emina Torlak (Eds.). ACM, 423–437. doi:10.1145/3385412.3386003

[11] Jacques Garrigue and Didier Rémy. 1999. Semi-Explicit First-Class
Polymorphism for ML. Inf. Comput. 155, 1-2 (1999), 134–169. doi:10.
1006/INCO.1999.2830

[12] Shengyi Jiang, Chen Cui, and Bruno C. d. S. Oliveira. 2025. Bidirec-
tional Higher-Rank Polymorphism with Intersection and Union Types.
Proc. ACM Program. Lang. 9, POPL (2025), 2118–2148. doi:10.1145/
3704907

[13] Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. 2007. Practical type inference for arbitrary-rank types.
J. Funct. Program. 17, 1 (2007), 1–82. doi:10.1017/S0956796806006034

[14] András Kovács. 2020. Elaboration with first-class implicit function
types. Proc. ACM Program. Lang. 4, ICFP (2020), 101:1–101:29. doi:10.
1145/3408983

[15] Daan Leijen. 2008. HMF: simple type inference for first-class polymor-
phism. In Proceeding of the 13th ACM SIGPLAN international conference
on Functional programming, ICFP 2008, Victoria, BC, Canada, September
20-28, 2008, James Hook and Peter Thiemann (Eds.). ACM, 283–294.
doi:10.1145/1411204.1411245

[16] Daan Leijen. 2009. Flexible types: robust type inference for first-class
polymorphism. In Proceedings of the 36th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL 2009, Savannah,
GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce
(Eds.). ACM, 66–77. doi:10.1145/1480881.1480891

[17] Robin Milner, Mads Tofte, and Robert Harper. 1990. Definition of
standard ML. MIT Press.

[18] Lionel Parreaux, Aleksander Boruch-Gruszecki, Andong Fan, and
Chun Yin Chau. 2024. When Subtyping Constraints Liberate: A Novel
Type Inference Approach for First-Class Polymorphism. Proc. ACM
Program. Lang. 8, POPL (2024), 1418–1450. doi:10.1145/3632890

[19] Benjamin C. Pierce and David N. Turner. 2000. Local type inference.
ACM Trans. Program. Lang. Syst. 22, 1 (2000), 1–44. doi:10.1145/345099.
345100

[20] Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios
Vytiniotis. 2020. A quick look at impredicativity. Proc. ACM Program.
Lang. 4, ICFP (2020), 89:1–89:29. doi:10.1145/3408971

[21] Alejandro Serrano, JurriaanHage, Dimitrios Vytiniotis, and Simon Pey-
ton Jones. 2018. Guarded impredicative polymorphism. In Proceed-
ings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June
18-22, 2018, Jeffrey S. Foster and Dan Grossman (Eds.). ACM, 783–796.
doi:10.1145/3192366.3192389

[22] Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional
Languages. https://api.semanticscholar.org/CorpusID:1398902

[23] Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam
Lindley, and Anton Lorenzen. 2025. Modal Effect Types. Proc. ACM
Program. Lang. 9, OOPSLA1 (2025), 1130–1157. doi:10.1145/3720476

[24] Jerzy Tiuryn and Pawel Urzyczyn. 1996. The subtyping problem for
second-order types is undecidable. In Proceedings 11th Annual IEEE
Symposium on Logic in Computer Science.

[25] Andrew K. Wright. 1995. Simple Imperative Polymorphism. LISP
Symb. Comput. 8, 4 (1995), 343–355.

[26] Ningning Xie Xie and Bruno C. d. S. Oliveira. 2018. Let Arguments
Go First. In Programming Languages and Systems - 27th European
Symposium on Programming, ESOP 2018, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in
Computer Science, Vol. 10801), Amal Ahmed (Ed.). Springer, 272–299.
doi:10.1007/978-3-319-89884-1_10

[27] Jinxu Zhao and Bruno C. d. S. Oliveira. 2022. Elementary Type Infer-
ence. In 36th European Conference on Object-Oriented Programming,
ECOOP 2022, June 6-10, 2022, Berlin, Germany (LIPIcs, Vol. 222), Karim
Ali and Jan Vitek (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für In-
formatik, 2:1–2:28. doi:10.4230/LIPICS.ECOOP.2022.2

A Comparison of Type Systems for
First-Class Polymorphism

Figure 1 compares Frost with QuickLook (QL) [20], GI [21],
HMF [15], and FreezeML [10] via examples taken from Ser-
rano et al. [20, 21]. Figure 2 continues the comparison with
new examples demonstrating the expressiveness of flexible
information flow and freezing of Frost. Type signatures of
functions appeared in these tables are given in Figure 3.

All systems included in the comparison table only require
simple constraint solving for type inference, mostly just
unification of polymorphic types. There are other systems
like MLF [1], HML [16], SuperF [18] which introduce new
type syntax and sophisticated constraint solving. The per-
formance of these systems on examples in Figure 1 can be
found in the literature [9, 18, 20].

4

https://doi.org/10.1145/3471874.3472985
https://doi.org/10.1145/3622871
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/3450952
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1145/964001.964025
https://doi.org/10.7488/era/4152
https://doi.org/10.1145/3385412.3386003
https://doi.org/10.1006/INCO.1999.2830
https://doi.org/10.1006/INCO.1999.2830
https://doi.org/10.1145/3704907
https://doi.org/10.1145/3704907
https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1145/3408983
https://doi.org/10.1145/3408983
https://doi.org/10.1145/1411204.1411245
https://doi.org/10.1145/1480881.1480891
https://doi.org/10.1145/3632890
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/3408971
https://doi.org/10.1145/3192366.3192389
https://api.semanticscholar.org/CorpusID:1398902
https://doi.org/10.1145/3720476
https://doi.org/10.1007/978-3-319-89884-1_10
https://doi.org/10.4230/LIPICS.ECOOP.2022.2

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Freezing Bidirectional Typing (Extended Abstract)

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

Frost QL GI HMF FreezeML
A Polymorphic instantiation
A1 𝜆𝑥 𝑦.𝑦

A2 choose id

A3 choose nil id

A4 𝜆(𝑥 : ∀𝑎.𝑎 → 𝑎).𝑥 𝑥
A5 id auto

A6 id auto′

A7 choose id auto

A8 choose id auto′

A9 𝑓 (choose id) ids
where 𝑓 : ∀𝑎.(𝑎 → 𝑎) → List 𝑎 → 𝑎

A10 poly id | poly (𝜆𝑥 .𝑥) | id poly (𝜆𝑥.𝑥)
A11 [20] 𝑘 (𝜆𝑓 .(𝑓 42, 𝑓 true) 𝑥𝑠)

where 𝑘 : ∀𝑎.𝑎 → List 𝑎 → Int,
𝑥𝑠 : List ((∀𝑎.𝑎 → 𝑎) → (Int, Bool))

A12 app poly id | revapp id poly

A13 app runST argST | revapp argST runST

B Functions on polymorphic lists
B1 tail ids | head ids | single id

B2 cons id ids

B3 cons (𝜆𝑥 .𝑥) ids
B4 append (single inc) (single id)
B5 [20] append (single id) ids
B6 map poly (single id)
B7 map head (single ids)
B8 head ids true
C Inference of polymorphic lambda binders and generalisation points
C1a 𝜆𝑓 .(𝑓 42, 𝑓 true)
C1b 𝜆(𝑓 : ∀𝑎.𝑎 → 𝑎).(𝑓 42, 𝑓 true)
C1c [20] 𝑔 (𝜆𝑓 .(𝑓 42, 𝑓 true))

where 𝑔 : ((∀𝑎.𝑎 → 𝑎) → Int × Bool) → 1
C2 𝑟 (𝜆𝑥 𝑦.𝑦)

where 𝑟 : (∀𝑎.𝑎 → ∀𝑏.𝑏 → 𝑏) → Int

E 𝜼-expansion
E1a 𝑘 ℎ lst
E1b 𝑘 (𝜆𝑥.ℎ 𝑥) lst

where lst : List (∀𝑎.Int → 𝑎 → 𝑎),
𝑘 : ∀𝑎.𝑎 → List 𝑎 → 𝑎, ℎ : Int → ∀𝑎.𝑎 → 𝑎

E2a [20] 𝜆𝑥.poly 𝑥

E2b [20] (𝜆𝑥.poly 𝑥) : (∀𝑎.𝑎 → 𝑎) → Int × Bool

E3a app poly id

E3b [20] app (𝜆𝑥 .poly 𝑥) id
Frost: app (𝜆𝑥 .poly 𝑥) ⌈id⌉

E4a [20] map poly ids

E4b [20] map (𝜆𝑥 .poly 𝑥) ids
E5a [20] compose poly head

E5b [20] 𝜆𝑥𝑠.poly (head 𝑥𝑠)

Figure 1. Comparison of type systems with FCP. Cover all examples in GI [21] and QL [20] (examples from QL are marked).
means well-typed; means ill-typed; means well-typed after adding type-free annotations (e.g., the freezing operator). We

provide the well-typed terms with freezing operators in Frost in the case of .

5

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

Wenhao Tang, Shengyi Jiang, Bruno C. d. S. Oliveira, and Sam Lindley

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

Frost QL GI HMF FreezeML
E 𝜼-expansion (new)
E6 (𝜆𝑓 .app 𝑓) poly id

E7 (𝜆𝑓 .app poly 𝑓) id
Frost: (𝜆𝑓 .app poly 𝑓) ⌈id⌉

B 𝜷-expansion (new)
B1 (𝜆𝑥 .app) 42 poly id

B2 (let 𝑥 = 42 in app) poly id

B3 app ((𝜆𝑥.poly) 42) id
F Freezing and bidirectional information flow (new)
F1 𝑓 (𝜆𝑥.ids)

where 𝑓 : ∀𝑎.(Int → 𝑎) → 𝑎

F2 𝑓 (𝜆𝑥.(𝑥, ids))
where 𝑓 : ∀𝑎.(∀𝑏.𝑏 → 𝑏 × 𝑎) → 𝑎

F3 𝑓 (𝜆𝑥.ids)
where 𝑓 : ∀𝑎.((∀𝑏.𝑏 → 𝑏) → 𝑎) → 𝑎

F4 (𝜆𝑓 .(𝑓 42, 𝑓 true)) id
Frost: (𝜆𝑓 .(𝑓 42, 𝑓 true)) ⌈id⌉

F5 pair (𝜆𝑥.𝑥) 42 : ((∀𝑎.𝑎 → 𝑎) → Int) × Int

F6 choose churchNil churchIds

F7 churchHead (choose churchNil churchIds)
Frost: churchHead (choose churchNil ⌈churchIds⌉)

† †

F8a polys (single id)
F8b let 𝑥𝑠 = single id in polys 𝑥𝑠

Frost: let 𝑥𝑠 = single ⌈id⌉ in polys 𝑥𝑠

Figure 2. Comparison of type systems with FCP (continued). New examples. †means well-typed only without value restriction.

head : ∀𝑎.List 𝑎 → 𝑎 tail : ∀𝑎.List 𝑎 → List 𝑎 append : ∀𝑎.List 𝑎 → List 𝑎 → List 𝑎

nil : ∀𝑎.List 𝑎 cons : ∀𝑎.𝑎 → List 𝑎 → List 𝑎 map : ∀𝑎 𝑏.(𝑎 → 𝑏) → List 𝑎 → List 𝑏

single : ∀𝑎.𝑎 → List 𝑎 length : ∀𝑎.List 𝑎 → Int compose : ∀𝑎 𝑏 𝑐.(𝑏 → 𝑐) → (𝑎 → 𝑏) → 𝑎 → 𝑐

runST : ∀𝑎.(∀𝑠 .ST 𝑠 𝑎) → 𝑎 app : ∀𝑎 𝑏.(𝑎 → 𝑏) → 𝑎 → 𝑏 pair : ∀𝑎 𝑏.𝑎 → 𝑏 → 𝑎 × 𝑏

argST : ∀𝑠 .ST 𝑠 Int revapp : ∀𝑎 𝑏.𝑎 → (𝑎 → 𝑏) → 𝑏 ChurchList 𝑎 � ∀𝑏.𝑏 → (𝑎 → 𝑏 → 𝑏) → 𝑏

id : ∀𝑎.𝑎 → 𝑎 auto : (∀𝑎.𝑎 → 𝑎) → (∀𝑎.𝑎 → 𝑎) churchNil : ∀𝑎.ChurchList 𝑎
ids : [∀𝑎.𝑎 → 𝑎] auto′ : ∀𝑏.(∀𝑎.𝑎 → 𝑎) → (𝑏 → 𝑏) churchIds : ChurchList (∀𝑎.𝑎 → 𝑎)
inc : Int → Int poly : (∀𝑎.𝑎 → 𝑎) → Int × Bool churchHead : ∀𝑎.ChurchList 𝑎 → 𝑎

choose : ∀𝑎.𝑎 → 𝑎 → 𝑎 polys : List (∀𝑎.𝑎 → 𝑎) → Int × Bool

Figure 3. Type signatures for functions used in the comparison.

6

	Abstract
	1 Introduction
	2 Frost
	2.1 Flowing from Functions to Arguments
	2.2 Flowing from Arguments to Functions
	2.3 Flowing Back and Forth via Patterns
	2.4 Freezing Flow
	2.5 More Examples

	References
	A Comparison of Type Systems for First-Class Polymorphism

