~__ \ (‘/_’,/ o o o © o
- Freezing Bidirectional Typing
Frost -- A novel approach to bidirectional type inference for first-class polymorphism

Wenhao Tang ', Shengyi Jiang 2, Bruno C. d. S. Oliveira 2, Sam Lindley 1

ML family workshop, 16th Oct 2025

THE UNIVERSITY
of EDINBURGH

& W K 2
THE UNIVERSITY OF HONG KONG

First-Class Polymorphism (FCP)

Let polymorphism

(prenex top level monotypes Va. a = a
polymorphism)

Higher-rank

) anywhere monotypes (Va. a = a) = Int
polymorphism
First-class
nolymorphism single id : List (Va.a—a)
(impredicative anywhere polytypes where single : Va.a — List a

polymorphism)
1d :Va.a = a

__—-L

Type Inference for FCP

where quantifiers can appear

which types to use for instantiation

example

First-class polymorphism anywhere

polytypes

single id : List (Va.a—a)

« What do we want to infer?
* where to Introduce quantifiers
* where to Instantiate quantifiers

* which polytype to use for instantiation

* which polytype to use for unannotated function parameters

» Full type inference for FCP 1s undecidable

E[fun x —> x|
E[id]
E[id]

E[fun x = M]

- Lots of different approaches in the literature based on different intuitions and heuristics

« Why yet another one?

Initial Motivation

* Better type Inference for Modal Effect Types
A OOPSLA

Sat 18 Oct 2025 10:45 - 11:00 at Orchid East - Type 2

Modal Effect Types

Effect handlers are a powerful abstraction for defining, customising, and composing computational effects. Statically ensuring that all
effect operations are handled requires some form of effect system, but using a traditional effect system would require adding extensive
effect annotations to the millions of lines of existing code in these languages. Recent proposals seek to address this problem by
removing the need for explicit effect polymorphism. However, they typically rely on fragile syntactic mechanisms or on introducing a
separate notion of second-class function. We introduce a novel semantic approach based on modal effect types.

Leo White
Jane Street

Wenhao Tang
The University of Edinburgh

ﬂ United Kingdom United Kingdom
' Stephen Dolan Daniel Hillerstrom
' Jane Street Category Labs and The University of Edinburgh
United Kingdom United Kingdom
' Anton Lorenzen

University of Edinburgh

Sam Lindley
The University of Edinburgh

United Kingdom United Kingdom

Initial Motivation

* Better type Inference for Modal Effect Types

* ¢ Type Inference for modal types Is similar to type inference for first-class polymorphism

* where to introduce modalities * where to introduce quantifiers

* where to instantiate modalities * where to instantiate quantifiers

* which modal type to use for instantiation * which polytype to use for instantiation
* which modal type to use for unannotated * which polytype to use for unannotated

function parameters function parameters

Key Observation

 Bidirectional type information flow is useful to answer these questions
« But existing approaches do not make use of info bidirectionally as much as we hope

o In particular, for function application M N there are two directions of information flow

* Frost allows information to flow back and forth and uses freezing to control its direction

\/sw

S /"
J\f\\ (\~

« Why called Frost: Frost forms when vapour flows to cold surfaces and freezes into ice crystals

Different Directions of Information
Flow In Previous Approaches

Flowing from Fun to Arg

[FM = A A<A; —B ['FN & A
['FMN = B

Flowing from Fun to Arg (1)

Where to introduce universal quantifiers
. A< A — B

poly : (Va. a = a) — Int [''-M N — B

Implicit introduction of Va

Flowing from Fun to Arg (2)

Which for f t
ich polytypes to use for function parameters A<A — B

poly2 : ((Va. a = a) — Int) — Int T I'FMN = B

the argument x has type (Va. a — a)

Flowing from Fun to Arg (3)

Which polytype to use for instantiation A<A, — B

poly3 : (List (Va. a = a)) — Int T TrMN—B
nil : Vb. List b

% Int

3 3

N instantiate nil with Ya. a — a

Flowing from Arg to Fun

[|PFEFN = A [AY+rM—A—> B
' Y+MN = B

Let Arguments Go First [Xie and Oliveira 2018]

Flowing from Arg to Fun (1)

Which polytype to use for instantiation

head : Va. List a — a
ids : List (Va. a — a)

“iwthN;ﬂs{

Instantiate head with the polytype Va. a — a

List (Va. a > a) > (Ya. a -

a >)]

List (Va.

Flowing from Arg to Fun (2)

Which polytype to use for function parameter _—

ids : List (Va. a — a)

X has type List (Va.

What If we want both directions ?

both directions

Sometimes we'd like to flow back and forth

foo : Vb. (b = List b) — Int
ids : List (Va. a — a)

only the type of ids (instead of the
whole arg) flows from arg to fun

Instantiate b with
the polytypeVa. a — a ___

~X has the polytypeVa. a — a

) - List (Va. a > a)) - Int|

b A
_
\
: A

But the previous two rules cannot propagate partial type information from arg to fun

Ghosts and Skeletons

Frost supports flowing back and forth by

* first passing skeletons from arg to fun
» then passing types from fun to arg

skeletons are types with ghosts
ghosts represent unknown information

['FN =P
' P,prM—=A—>B [FN <A

['|p-rMN = B

Ghosts and Skeletons

FI—PJ:::>I’
foo : vb. (b = List b) — Int |P ,0 I—M Ty SB S

ids : List (Va. a — a) S~
I‘|pt—A41V::>E3

property: the skeleton of a term
two universal ghosts for unknown quantifiers matches any of its potential types

a > a)

s T e b o e = "-‘ = o = - A PP Y G B P _ ~ s e =

R G S

. y) gy "

! ».”. E

! b |]

o/ ° 1 S a °
N ‘\.‘
N SN e
SRS

? a ghost for an unknown typ / skeleton inference

Instantiate with the 4
polytypeVa. a — a

Q f u (X) % 1d
- X has the polytypeVa. a — a

ee———— .

(G2 9o tist a2 o) o i

More on Skeletons

* Types AB::=a | 1] A > B | Va.A

* Skeletons P,Q :=a | 1 | P > Q| Va.P | | . P
» Skeleton inference rules mimic typing rules, propagating through program structures

(fun x = x, fun x = Xx)

skeleton inference

1] @ potentially polymorphic pair of
{ two potentially polymorphic functions

\, skeleton inference

let vy = 42 in (fun x = x, fun x = x)

Haunting

 For a variable binding x : A in the context, its skeleton should be compatible with any type
derived from instantiating and generalising A

» For example, haunt | hoint |
1d : Va. a

verb [with object]

palr : Va b. . . > |
(of a ghost) manifest itself at (a place) regular|y Ssa—————

* haunt(A) gives such a skeleton for A

haunt(Va.P) = haunt(P[l/a])
haunt(fA.P) = haunt(P)
haunt(P) = [\.P, if P guarded

What If the skeleton Is not as

Informative as we want ?

Unsatisfying Skeletons

F |— N = P
single : Va. a — List a T P p : M A =3

1d : Va. a = a
F | p FM N — B

o

"\ skeleton inference

guess a monotype T — T for instantiation

because the pattern does not provide
anything useful

By default Frost gives List (t — 1) for some monotype T

Unsatisfying Skeletons

But if all information flows from arg to fun we have List (Va. a = a)

single : Va. a — List a
1d : Va. a = a

Instantiate a with the polytype Va. a — a

a — al

. a = a) — List Va.

Freezing Flow

Frost allows programmers to choose which information they want to pass from arg to fun via a
freezing operator adapted from FreezeML [Emrich et al. 2020]

single : Vb. b — List b
1d : Va. a — a

mstantlate b W|th the polytype va.a ->a

% Llst (Va a % a)

" skeleton iffference . .
_— Freezing a term means Its type can

never be influenced by Its context

Thus we can use Its type to guide
the type inference of its context

Now we have List (Va. a — a)

One More Example

F |— N = P
choose : Va. a * a = a ‘P p " M :>A - B > CF
id : Va. a = a I‘|p|—MN:>B

m % mH m x <Va a - a)

\ keleton inference

Instantiate a with the

polytype Va. a — fun x — x hasthe polytypeVa. a — a

. a = a) = (va. a - a)

Frost QL GI HMF FreezeML

A Polymorphic instantiation
Al Axy.y o o ® o o
A2 choose id ® ® o [[
A3 choose nil ids [o [o [
A4 Alx :Ya.a — a).xx o o ® ® ®
A5 id auto [o [[L
A6 id auto’ ® O ® o o
A7 choose id auto o o [J o [
A8 choose id auto’ O O O O O
A9 f (choose id) ids o o O O ©

where f : Va.(a — a) — Lista — a
A10 poly id | poly (Ax.x) | id poly (Ax.x) ® ® ® o ©
A1l [21] Kk (Af.(f 42, f true)) xs ® ® O O O

where k : Va.a — List a — Int,

xs : List ((VYa.a — a) — (Int,Bool))

Al2 app poly id | revapp id poly o ® ® [L))
Al13 app runST argST | revapp argST runST [[[J [J)
B Functions on polymorphic lists
B1 tail ids | head ids | single id o o o o ®
B2 cons id ids o o o [[)
B3 cons (Ax.x) ids o ® ® ® ©
B4 append (single inc) (single id) o o o o o
B5[21] append (single id) ids o o O O ©
B6 map poly (single id) ® ® O O ©
B7 map head (single ids) O o o ® ®
B8 head ids true ® ® ® [[)
C Inference of polymorphic lambda binders and generalisation points
Cla Af.(f 42, f true) O O O O O
C1b A(f :Va.a — a).(f 42, f true) ® ® ® o o
Clc [21] g (Af.(f 42, f true)) o o O O O

where g : ((Va.a — a) — Int X Bool) — 1
C2 r (Ax y.y) o o O O ©

where r : (Va.a —» Vb.b — b) — Int
E n-expansion
Ela k h st O O O O O
E1b k (Ax.h x) Ist ® ® ® o [)

where [st : List (Va.Int — a — a),

k :Va.a > Lista = a, h: Int > Ya.a — a
E2a [21] Ax.poly x O O O O O
E2b [21] (Ax.poly x) : (Va.a — a) — Int X Bool ® ® O ® O
E3a app poly id [o o o ©
E3b [21] app (Ax.poly x) id © O O O O
Frost: app (Ax.poly x) [id]

E4a [21] map poly ids o ® ® o o
E4b [21] map (Ax.poly x) ids ® o O O O
E5a [21] compose poly head O ® ® ® o
E5b [21] Axs.poly (head xs) O O O O O

Frost QL GI HMF FreezeML
E n-expansion (new)
E6 (Af.app f) poly id ® O O O O
E7 (Af.app poly f) id) O O O O
Frost: (Af.app poly f) [id]
B B-expansion (new)
B1 (Ax.app) 42 poly id ® O o ® [)
B2 (let x =42 in app) poly id ® O ® ®)
B3 app ((Ax.poly) 42) id o O o ® ©
F Freezing and bidirectional information flow (new)
F1 f (Ax.ids) e O o o o
where f : Va.(Int > a) — a
F2 f (Ax.(x, ids)) ® O ® ® O
where f : Va.(Vb.b —» bXa) — a
F3 f (Ax.ids) ® O O O O
where f : Va.((Vb.b - b) — a) — a
F4 (Af.(f 42, f true)) id © O O O O
Frost: (Af.(f 42, f true)) [id]
F5 pair (Ax.x) 42 : ((Va.a — a) — Int) X Int ® ® O O O
F6 choose churchNil churchlIds o O o ® ®
F7 churchHead (choose churchNil churchIds) L)) O o o O
Frost: churchHead (choose churchNil [churchIds])
F8a polys (single id) ® ® O O O
F8b let xs = single id in polys xs) O O O ©

Frost: let xs = single [id] in polys xs

Serrano et al. 2020

Coloured Frost

What I've shown so far i1s what we have at the point of submitting this extended abstract

After that | realised we can give a much cleaner declarative presentation of Frost
inspired by Colored Local Type Inference [Odersky et al. 2002]

Inherited types A, Bu=a | A — B|Va. A
Synthesised types A,B:=a | A — B | Va.A
Mixed types AB:=a|A— B|VaA|Va.A

quantifiers are coloured to show whether they are inherited Va.A or synthesised Va.A

Coloured Frost

first infer a skeleton for N

Old rule: — [N _ \

I : \ M=A—-B ~TrN<A Intuitive but kind of algorithmic

[|prMN = B

use the skeleton P to guide typing of M

New rule:
reverse the colour in A

more declarative

rvN:A T+M{A)
T MN:B

More 1o appear

« Work In progress

A declarative specification based on ghosts and skeletons
- A more declarative specification using colours

« A simple sound and complete type inference algorithm

» Implementation with both first-class polymorphism and modal effect types

Takeaway

* Allow type information to flow bidirectionally via ghosts

* and let programmers to control its directions via freezing &

., (. & - W) x (Va. a = a)|

\skeleton inference fun

T)y (@un x = X, L1d
Instantiate a with the N / — -

polytype Va. a — a

arg

arg

<=
fun I

