
Wenhao Tang 1, Shengyi Jiang 2, Bruno C. d. S. Oliveira 2, Sam Lindley 1

ML family workshop, 16th Oct 2025

❄ Freezing Bidirectional Typing
Frost -- A novel approach to bidirectional type inference for first-class polymorphism

1 2

First-Class Polymorphism (FCP)
where quantifiers

can appear
which types to use

for instantiation
example

Let polymorphism
(prenex

polymorphism)
top level monotypes ∀a. a -> a

Higher-rank
polymorphism

anywhere monotypes (∀a. a -> a) -> Int

First-class
polymorphism
(impredicative
polymorphism)

anywhere polytypes

single id : List (∀a.a->a)

where single : ∀a.a -> List a

 id : ∀a.a -> a

Type Inference for FCP
where quantifiers can appear which types to use for instantiation example

First-class polymorphism anywhere polytypes single id : List (∀a.a->a)

• What do we want to infer?

• where to introduce quantifiers E[fun x -> x]

• where to instantiate quantifiers E[id]

• which polytype to use for instantiation E[id]

• which polytype to use for unannotated function parameters E[fun x -> M]

• Full type inference for FCP is undecidable
• Lots of different approaches in the literature based on different intuitions and heuristics
• Why yet another one?

Initial Motivation
• Better type inference for Modal Effect Types

Initial Motivation
• Better type inference for Modal Effect Types

• 👀 Type inference for modal types is similar to type inference for first-class polymorphism

• where to introduce quantifiers

• where to instantiate quantifiers

• which polytype to use for instantiation

• which polytype to use for unannotated
function parameters

• where to introduce modalities

• where to instantiate modalities

• which modal type to use for instantiation

• which modal type to use for unannotated
function parameters

Key Observation
• Bidirectional type information flow is useful to answer these questions

• But existing approaches do not make use of info bidirectionally as much as we hope

• In particular, for function application M N there are two directions of information flow

• Frost allows information to flow back and forth and uses freezing to control its direction

• Why called Frost: Frost forms when vapour flows to cold surfaces and freezes into ice crystals

❄

Different Directions of Information
Flow in Previous Approaches

Flowing from Fun to Arg

Flowing from Fun to Arg (1)

(∀a. a -> a) -> Int

poly (fun x -> x)
implicit introduction of ∀a

Where to introduce universal quantifiers

poly : (∀a. a -> a) -> Int

Flowing from Fun to Arg (2)

((∀a. a -> a) -> Int) -> Int

poly2 (fun x -> 42)
the argument x has type (∀a. a -> a)

Which polytypes to use for function parameters

poly2 : ((∀a. a -> a) -> Int) -> Int

Flowing from Fun to Arg (3)

(List (∀a. a -> a)) -> Int

poly3 nil
instantiate nil with ∀a. a -> a

Which polytype to use for instantiation

poly3 : (List (∀a. a -> a)) -> Int
nil : ∀b. List b

Flowing from Arg to Fun

Let Arguments Go First [Xie and Oliveira 2018]

Flowing from Arg to Fun (1)

head ids

head : ∀a. List a -> a
ids : List (∀a. a -> a)

List (∀a. a -> a)List (∀a. a -> a) -> (∀a. a -> a)

instantiate head with the polytype ∀a. a -> a

Which polytype to use for instantiation

Flowing from Arg to Fun (2)

(fun x -> x) ids

ids : List (∀a. a -> a)

List (∀a. a -> a)

Which polytype to use for function parameter

x has type List (∀a. a -> a)

What if we want both directions ?

both directions

foo (fun x -> ids)

foo : ∀b. (b -> List b) -> Int
ids : List (∀a. a -> a)

List (∀a. a -> a)

instantiate b with
the polytype ∀a. a -> a

((∀a. a -> a) -> List (∀a. a -> a)) -> Int

x has the polytype ∀a. a -> a

Sometimes we'd like to flow back and forth

only the type of ids (instead of the
whole arg) flows from arg to fun

But the previous two rules cannot propagate partial type information from arg to fun

Ghosts and Skeletons
Frost supports flowing back and forth by
• first passing skeletons from arg to fun
• then passing types from fun to arg

skeletons are types with ghosts
ghosts represent unknown information

Ghosts and Skeletons

foo (fun x -> ids)

👻. 👻 -> 👻. List (∀a. a -> a)

a ghost for an unknown type

two universal ghosts for unknown quantifiers
property: the skeleton of a term
matches any of its potential types

skeleton inference
instantiate with the
polytype ∀a. a -> a

((∀a. a -> a) -> List (∀a. a -> a)) -> Int
x has the polytype ∀a. a -> a

foo : ∀b. (b -> List b) -> Int
ids : List (∀a. a -> a)

More on Skeletons

(fun x -> x, fun x -> x)

👻.(👻. 👻 -> 👻, 👻. 👻 -> 👻)

skeleton inference

let y = 42 in (fun x -> x, fun x -> x)

skeleton inference

• Types A, B ::= a | 1 | A -> B | ∀a.A
• Skeletons P,Q ::= a | 1 | P -> Q | ∀a.P | 👻 | 👻.P
• Skeleton inference rules mimic typing rules, propagating through program structures

a potentially polymorphic pair of
two potentially polymorphic functions

Haunting
• For a variable binding x : A in the context, its skeleton should be compatible with any type

derived from instantiating and generalising A

• For example,

id 👻. 👻 -> 👻
skeleton inferenceid : ∀a. a -> a

pair 👻. 👻 -> Int * 👻skeleton inferencepair : ∀a b. a -> b -> a * b

• haunt(A) gives such a skeleton for A

What if the skeleton is not as
informative as we want ?

Unsatisfying Skeletons

single id

guess a monotype τ -> τ for instantiation
because the pattern does not provide
anything useful

By default Frost gives List (τ -> τ) for some monotype τ

(τ -> τ) -> List (τ -> τ)

single : ∀a. a -> List a
id : ∀a. a -> a

👻. 👻 -> 👻
skeleton inference

Unsatisfying Skeletons
But if all information flows from arg to fun we have List (∀a. a -> a)

single : ∀a. a -> List a
id : ∀a. a -> a

single id

∀a. a -> a(∀a. a -> a) -> List ∀a. a -> a

instantiate a with the polytype ∀a. a -> a

Freezing Flow
Frost allows programmers to choose which information they want to pass from arg to fun via a
freezing operator adapted from FreezeML [Emrich et al. 2020]

single : ∀b. b -> List b
id : ∀a. a -> a

🧊
Now we have List (∀a. a -> a)

single id

∀a. a -> a(∀a. a -> a) -> List (∀a. a -> a)

instantiate b with the polytype ∀a. a -> a

Freezing a term means its type can
never be influenced by its context

Thus we can use its type to guide
the type inference of its context

skeleton inference

🧊

One More Example

choose (fun x -> x, id)

👻. (👻. 👻 -> 👻) * (∀a. a -> a)

skeleton inference

instantiate a with the
polytype ∀a. a -> a fun x -> x has the polytype ∀a. a -> a

(∀a. a -> a) * (∀a. a -> a) -> (∀a. a -> a)

choose : ∀a. a * a -> a
id : ∀a. a -> a

Serrano et al. 2020

Coloured Frost
What I've shown so far is what we have at the point of submitting this extended abstract

After that I realised we can give a much cleaner declarative presentation of Frost
inspired by Colored Local Type Inference [Odersky et al. 2002]

quantifiers are coloured to show whether they are inherited ∀a.A or synthesised ∀a.A

Coloured Frost
Old rule:

New rule:
reverse the colour in A

first infer a skeleton for N

use the skeleton P to guide typing of M

intuitive but kind of algorithmic

more declarative

More to appear
• Work in progress

• A declarative specification based on ghosts and skeletons

• A more declarative specification using colours

• A simple sound and complete type inference algorithm

• Implementation with both first-class polymorphism and modal effect types

Takeaway
• Allow type information to flow bidirectionally via ghosts 👻

• and let programmers to control its directions via freezing 🧊

🧊choose (fun x -> x, id)

👻. (👻. 👻 -> 👻) * (∀a. a -> a)

skeleton inference

instantiate a with the
polytype ∀a. a -> a

fun x -> x has the polytype ∀a. a -> a

(∀a. a -> a) * (∀a. a -> a) -> (∀a. a -> a)

fun arg

fun arg

