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❄ Freezing Bidirectional Typing
Frost -- A novel approach to bidirectional type inference for first-class polymorphism
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First-Class Polymorphism (FCP)
where quantifiers 

can appear
which types to use 

for instantiation
example

Let polymorphism 
(prenex 

polymorphism) 
top level monotypes ∀a. a -> a

Higher-rank 
polymorphism

anywhere monotypes (∀a. a -> a) -> Int

First-class 
polymorphism 
(impredicative 
polymorphism) 

anywhere polytypes

single id : List (∀a.a->a)  

where single : ∀a.a -> List a      

      id : ∀a.a -> a



Type Inference for FCP
where quantifiers can appear which types to use for instantiation example

First-class polymorphism anywhere polytypes single id : List (∀a.a->a) 

• What do we want to infer? 

• where to introduce quantifiers                      E[fun x -> x] 

• where to instantiate quantifiers                    E[id] 

• which polytype to use for instantiation        E[id] 

• which polytype to use for unannotated function parameters    E[fun x -> M] 

• Full type inference for FCP is undecidable 
• Lots of different approaches in the literature based on different intuitions and heuristics 
• Why yet another one?



Initial Motivation
• Better type inference for Modal Effect Types



Initial Motivation
• Better type inference for Modal Effect Types 

• 👀 Type inference for modal types is similar to type inference for first-class polymorphism

• where to introduce quantifiers 

• where to instantiate quantifiers 

• which polytype to use for instantiation 

• which polytype to use for unannotated 
function parameters

• where to introduce modalities 

• where to instantiate modalities 

• which modal type to use for instantiation 

• which modal type to use for unannotated 
function parameters



Key Observation
• Bidirectional type information flow is useful to answer these questions 

• But existing approaches do not make use of info bidirectionally as much as we hope 

• In particular, for function application M N there are two directions of information flow 

• Frost allows information to flow back and forth and uses freezing to control its direction 

• Why called Frost: Frost forms when vapour flows to cold surfaces and freezes into ice crystals

❄



Different Directions of Information 
Flow in Previous Approaches



Flowing from Fun to Arg



Flowing from Fun to Arg (1)

(∀a. a -> a) -> Int

poly (fun x -> x)
implicit introduction of ∀a

Where to introduce universal quantifiers

poly : (∀a. a -> a) -> Int



Flowing from Fun to Arg (2)

((∀a. a -> a) -> Int) -> Int

poly2 (fun x -> 42)
the argument x has type (∀a. a -> a)

Which polytypes to use for function parameters

poly2 : ((∀a. a -> a) -> Int) -> Int



Flowing from Fun to Arg (3)

(List (∀a. a -> a)) -> Int

poly3   nil
instantiate nil with ∀a. a -> a

Which polytype to use for instantiation

poly3 : (List (∀a. a -> a)) -> Int 
nil   : ∀b. List b 



Flowing from Arg to Fun

Let Arguments Go First [Xie and Oliveira 2018]



Flowing from Arg to Fun (1)

head   ids

head : ∀a. List a -> a 
ids : List (∀a. a -> a)

List (∀a. a -> a)List (∀a. a -> a) -> (∀a. a -> a)

instantiate head with the polytype ∀a. a -> a

Which polytype to use for instantiation



Flowing from Arg to Fun (2)

(fun x -> x) ids

ids : List (∀a. a -> a)

List (∀a. a -> a)

Which polytype to use for function parameter

x has type List (∀a. a -> a)



What if we want both directions ?



both directions

foo  (fun x -> ids)

foo : ∀b. (b -> List b) -> Int 
ids : List (∀a. a -> a)

List (∀a. a -> a)

instantiate b with  
the polytype ∀a. a -> a

((∀a. a -> a) -> List (∀a. a -> a)) -> Int

x has the polytype ∀a. a -> a

Sometimes we'd like to flow back and forth

only the type of ids (instead of the 
whole arg) flows from arg to fun

But the previous two rules cannot propagate partial type information from arg to fun



Ghosts and Skeletons
Frost supports flowing back and forth by 
• first passing skeletons from arg to fun 
• then passing types from fun to arg 

skeletons are types with ghosts 
ghosts represent unknown information



Ghosts and Skeletons

foo  (fun x -> ids)

👻. 👻 -> 👻. List (∀a. a -> a)

a ghost for an unknown type

two universal ghosts for unknown quantifiers
property: the skeleton of a term 
matches any of its potential types

skeleton inference
instantiate with the  
polytype ∀a. a -> a

((∀a. a -> a) -> List (∀a. a -> a)) -> Int
x has the polytype ∀a. a -> a

foo : ∀b. (b -> List b) -> Int 
ids : List (∀a. a -> a)



More on Skeletons

(fun x -> x, fun x -> x)

👻.(👻. 👻 -> 👻, 👻. 👻 -> 👻)

skeleton inference

let y = 42 in (fun x -> x, fun x -> x)

skeleton inference

• Types           A, B ::= a | 1 | A -> B | ∀a.A 
• Skeletons    P,Q ::= a | 1 | P -> Q | ∀a.P | 👻 | 👻.P 
• Skeleton inference rules mimic typing rules, propagating through program structures

a potentially polymorphic pair of 
two potentially polymorphic functions



Haunting
• For a variable binding x : A in the context, its skeleton should be compatible with any type 

derived from instantiating and generalising A 

• For example,

id 👻. 👻 -> 👻
skeleton inferenceid : ∀a. a -> a

pair 👻. 👻 -> Int * 👻skeleton inferencepair : ∀a b. a -> b -> a * b

• haunt(A) gives such a skeleton for A



What if the skeleton is not as 
informative as we want ?



Unsatisfying Skeletons

single   id

guess a monotype τ -> τ for instantiation 
because the pattern does not provide 
anything useful

By default Frost gives List (τ -> τ) for some monotype τ

(τ -> τ) -> List (τ -> τ)

single : ∀a. a -> List a 
id : ∀a. a -> a

👻. 👻 -> 👻
skeleton inference



Unsatisfying Skeletons
But if all information flows from arg to fun we have List (∀a. a -> a)

single : ∀a. a -> List a 
id : ∀a. a -> a

single   id

∀a. a -> a(∀a. a -> a) -> List ∀a. a -> a

instantiate a with the polytype ∀a. a -> a



Freezing Flow
Frost allows programmers to choose which information they want to pass from arg to fun via a 
freezing operator adapted from FreezeML [Emrich et al. 2020]

single : ∀b. b -> List b 
id : ∀a. a -> a

🧊
Now we have List (∀a. a -> a)

single   id

∀a. a -> a(∀a. a -> a) -> List (∀a. a -> a)

instantiate b with the polytype ∀a. a -> a

Freezing a term means its type can 
never be influenced by its context 

Thus we can use its type to guide 
the type inference of its context

skeleton inference



🧊

One More Example

choose (fun x -> x, id)

👻. (👻. 👻 -> 👻) * (∀a. a -> a)

skeleton inference

instantiate a with the 
polytype ∀a. a -> a fun x -> x has the polytype ∀a. a -> a

(∀a. a -> a) * (∀a. a -> a) -> (∀a. a -> a)

choose : ∀a. a * a -> a 
id : ∀a. a -> a



Serrano et al. 2020



Coloured Frost
What I've shown so far is what we have at the point of submitting this extended abstract 

After that I realised we can give a much cleaner declarative presentation of Frost 
inspired by Colored Local Type Inference [Odersky et al. 2002]

quantifiers are coloured to show whether they are inherited ∀a.A or synthesised ∀a.A



Coloured Frost
Old rule:

New rule:
reverse the colour in A

first infer a skeleton for N

use the skeleton P to guide typing of M 

intuitive but kind of algorithmic

more declarative



More to appear
• Work in progress 

• A declarative specification based on ghosts and skeletons 

• A more declarative specification using colours 

• A simple sound and complete type inference algorithm 

• Implementation with both first-class polymorphism and modal effect types



Takeaway
• Allow type information to flow bidirectionally via ghosts 👻 

• and let programmers to control its directions via freezing 🧊

🧊choose (fun x -> x, id)

👻. (👻. 👻 -> 👻) * (∀a. a -> a)

skeleton inference

instantiate a with the 
polytype ∀a. a -> a

fun x -> x has the polytype ∀a. a -> a

(∀a. a -> a) * (∀a. a -> a) -> (∀a. a -> a)

fun arg

fun arg


