
Wenhao Tang1, Leo White2, Stephen Dolan2, Daniel Hillerström1, Sam Lindley1, Anton Lorenzen1

OOPSLA, 19th Oct 2025

Modal Effect Types

1 2

A Recap of Traditional Effect Types !

Effects and Effect Types

Effects are the way programs interact with their environment

Including I/O, concurrency, exceptions, nondeterminism, probability

Effect types statically track use of effects in types

inc : Int -" Int
inc x = x + 1

app : (Int -" Int) -" Int -" Int
app f x = f x

▶ app inc 42
43 : Int

Traditional Effect Types

inc : Int -"{} Int
inc x = x + 1

app : (Int -"{} Int) -"{} Int -"{} Int
app f x = f x

Traditional Effect Types
empty effect

traditional effect types annotate each
function arrow with the effects it uses

inc : Int -"{} Int
inc x = x + do ask ()

app : (Int -"{} Int) -"{} Int -"{} Int
app f x = f x

ask : 1 =$ Int takes a unit and returns an integer

Traditional Effect Types

inc : Int -"{ask} Int
inc x = x + do ask ()

app : (Int -"{} Int) -"{} Int -"{} Int
app f x = f x

Traditional Effect Types

inc : Int -"{ask} Int
inc x = x + do ask ()

app : (Int -"{ask} Int) -"{ask} Int -"{ask} Int
app f x = f x

we also need to annotate function arrows of app
to allow effectful arguments

Traditional Effect Types

app : ∀ e . (Int -"{e} Int) -"{e} Int -"{e} Int
app f x = f x

the most general type requires effect polymorphism

inc : Int -"{ask} Int
inc x = x + do ask ()

Traditional Effect Types

inc : ∀ e . Int -"{ask, e} Int
inc x = x + do ask ()

app : ∀ e . (Int -"{e} Int) -"{e} Int -"{e} Int
app f x = f x

ans : ∀ e . (1 -"{ask, e} Int) -"{e} Int
ans f = handle f () with { ask () r '-" r 37 }

a handler of ask which resumes the continuation r with 37

handler's argument is allowed to use ask
plus any other effects abstracted by e

Traditional Effect Types

Traditional Effect Types

inc : ∀ e . Int -"{ask, e} Int
app : ∀ e . (Int -"{e} Int) -"{e} Int -"{e} Int
ans : ∀ e . (1 -"{ask, e} Int) -"{e} Int

Effect variables are verbose

Adding traditional effect types to existing languages requires significant rewriting of
type signatures such as app

Can we get rid of these effect variables?

Our Proposal: Modal Effect Types #

Modal Effect Types

app : ∀ e . (Int -"{e} Int) -"{e} Int -"{e} Int
app f x = f x

$ This is unfair! The app itself does not even mention any effects!

% Why don't we just track this fact?

& Let us take a closer look at app

' But effect types are entangled with function arrows in a traditional effect system

Let's decouple effect types from function arrows

Ambient Effect Context

app : (Int -" Int) -" Int -" Int

Typing judgements track effect contexts, i.e., effects provided by the context

@ E @ E

Both the argument and result of app share the same effect context E

@ E ambient effect context (part of the typing judgement)

Absolute Modality

app : (Int -" Int) -" Int -" Int

An absolute modality [F] specifies an effect context F in a type

Absolute Modality

app : []((Int -" Int) -" Int -" Int)

An absolute modality [F] specifies an effect context F in a type

@ .
app itself is a pure function

@ E

By subeffecting we can still apply app in any effect context E

The empty absolute modality [] indicates that app uses no effects

[] overwrites E to empty

Absolute Modality

inc : ∀ e . Int -"{ask, e} Int
inc x = x + do ask ()

Similarly for inc

Absolute Modality

The absolute modality [ask] indicates that inc uses ask

inc : [ask](Int -" Int)
inc x = x + do ask ()

Similarly for inc

By subeffecting we can still apply inc in any effect context E containing ask

Relative Modality

ans : ∀ e . (1 -"{ask, e} Int) -"{e} Int

A relative modality <F> specifies an extension F to the effect context

Relative Modality

ans : <ask>(1 -" Int) -" Int

The relative modality <ask> indicates that ans' argument may additionally use ask

meanwhile can still use effects E from the context

In other words, ans handles ask

@ ask, E

@ E

A relative modality <F> specifies an extension F to the effect context

<ask> adds ask to
the effect context

Relative Modality

ans : [](<ask>(1 -" Int) -" Int)

The absolute modality [] indicates that ans itself does not use effects

By sub-effecting we may still use ans with other effects

@ ask

@ .

A relative modality <F> specifies an extension F to the effect context

Modal Effect Types
inc : [ask](Int -" Int)
app : []((Int -" Int) -" Int -" Int)
ans : [](<ask>(1 -" Int) -" Int)

Modal Effect Types
inc : [ask](Int -" Int)
app : (Int -" Int) -" Int -" Int
ans : <ask>(1 -" Int) -" Int

Convention: global function definitions implicitly have a []

Modal Effect Types

Compose them together

▶ ans (fun () -" app inc 42)
79 : Int

inc : [ask](Int -" Int)
app : (Int -" Int) -" Int -" Int
ans : <ask>(1 -" Int) -" Int

Cooperative Concurrency (
A Case Study:

Cooperative Concurrency (

effect Coop = fork : 1 =$ Bool | suspend : 1 =$ 1
data Proc e = proc (List（Proc e）-"{e} 1)

-* push a process into a queue
push : ∀ e . Proc -"{e} List Proc -"{e} List Proc

-* run the first process in the queue
next : ∀ e . List Proc -"{e} 1

schedule : ∀ e . (1 -"{Coop, e} 1) -"{e} List Proc -"{e} 1
schedule m = handle m () with
return () =$ fun q -" next q,
suspend () r =$ fun q -" next (push (proc (r ())) q),
fork () r =$ fun q -" r true (push (proc (r false)) q)

With traditional effect types:

Cooperative Concurrency (

effect Coop = fork : 1 =$ Bool | suspend : 1 =$ 1
data Proc = proc (List Proc -" 1)

-* push a process into a queue
push : [](Proc -" List Proc -" List Proc)

-* run the first process in the queue
next : [](List Proc -" 1)

schedule : [](<Coop>(1 -" 1) -" List Proc -" 1)
schedule m = handle m () with
return () =$ fun q -" next q,
suspend () r =$ fun q -" next (push (proc (r ())) q),
fork () r =$ fun q -" r true (push (proc (r false)) q)

With modal effect types:

A Quick Look at the Core Calculus &

A Tale of Locks) and Keys *
Γ,)_[ask] '- fun x -" f x : Int -" Int @ ask

Γ '- mod_[ask] (fun x -" f x) : [ask](Int -" Int) @ E

Γ '- V : [](Int -" Int) @ E Γ, f :_[] Int -" Int '- M : A @ E

Γ '- let mod_[] f = V in M : A @ E

[] =$ [ask]

f :_[] Int -" Int,)_[ask] '- f : Int -" Int @ ask

mod introduces a modality and a lock

modality transformation: the key * to the lock

let mod eliminates a modality and
introduces a binder with a modality

the ambient effect context is
overwritten to ask

locks control usage of variables

More in the Paper

• MET: a core calculus with modal effect types
• Based on multimodal type theory (Gratzer et al. 2020)

• Inspired by languages Frank (Lindley et al. 2017) and Effekt (Brachthäuser et al. 2020)

• Masking <E|/ (the full syntax of relative modality is <E|F>)
• Type soundness and effect safety
• Extensions to MET: parametric polymorphism, ADT
• Simple bidirectional typing for MET
• Encoding a fragment of traditional effect types into MET without the

requirement of effect variables

More in the Paper

• Rows and Capabilities as Modal Effects.
• a uniform framework for encoding different effect systems
• conditionally accepted by POPL

• Better type inference for modal types
• Formal comparison with capture tracking of Scala
• Denotational semantics and logical relations
• Higher-order effects

Ongoing and Future Work

Takeaway
Do not track effects on every function arrow -- track them when needed!

inc : ∀ e . Int -"{ask, e} Int
app : ∀ e . (Int -"{e} Int) -"{e} Int -"{e} Int
ans : ∀ e . (1 -"{ask, e} Int) -"{e} Int
data Proc e = proc (List（Proc e）-"{e} 1)
push : ∀ e . Proc -"{e} List Proc -"{e} List Proc
next : ∀ e . List Proc -"{e} 1
schedule : ∀ e . (1 -"{Coop, e} 1) -"{e} List Proc -"{e} 1

Takeaway
Do not track effects on every function arrow -- track them when needed!

inc : [ask](Int -" Int)
app : []((Int -" Int) -" Int -" Int)
ans : [](<ask>(1 -" Int) -" Int)
data Proc = proc (List Proc -" 1)
push : [](Proc -" List Proc -" List Proc)
next : [](List Proc -" 1)
schedule : [](<Coop>(1 -" 1) -" List Proc -" 1)

(P.S. I'm looking for a postdoc position)

