Modal Effect Types

Wenhao Tang’, Leo White?, Stephen Dolan?, Daniel Hillerstrom?!, Sam Lindley’, Anton Lorenzen’

OOPSLA, 19th Oct 2025

2
THE UNIVERSITY
of EDINBURGH O‘O) Jane Street

A Recap of Traditional Effect Types [

Effects and Effect Types

Effects are the way programs interact with their environment

Including 1/0, concurrency, exceptions, nondeterminism, probability

Effect types statically track use of effects in types

Traditional Effect Types

inc : Int — Int
inc X = X + 1

app : (Int - Int) — Int — Int
app f x = T X

W app inc 42
43 : Int

Traditional Effect Types

_empty effect
’ ‘ Int traditional effect types annotate each

function arrow with the effects It uses

app : (Int =1} Int) —=1{} Int =1{} Int
app f x = T X

Traditional Effect Types

inc : Int —{} Int

P

inc x = x +{o ask (8

% ask : 1 = Int takesa unitand returns an integer

app : (Int =1} Int) —=1{} Int =1{} Int
app f x = T X

Traditional Effect Types

inc : Int —{ask} Int
inc X = X + do ask ()

app : (Int =1} Int) —=1{} Int =1{} Int
app f x = X

Traditional Effect Types

inc x = x + do ask ()

— (Inti??¥ggk}\lnt) —{ask} Int —{ask} Int
app f x = f X

B \ve also need to annotate function arrows of app
to allow effectful arguments

Traditional Effect Types

inc : Int —{ask} Int

“the most general type requires effect polymorphism

Traditional Effect Types

inc : V e . Int —>{ask, e} Int
inc X = X + do ask ()

app : Ve . (Int =»1{e} Int) —1ie}t Int —={ie} Int
app f x = f x

o, Nandler's argument is allowed to use ask
¢~ plus any other effects abstracted by e

ans : VY . (1 \ |(e‘)Int) —{e} Int

ans f = handle . () ‘ fask () r = r 37 }

a handler of ask which resumes the continuation r with 37

Traditional Effect Types

inc : V e . Int —>{ask, e} Int
app : Ve . (Int =»4{e} Int) —1ie}t Int —=1{ie} Int
ans : Ve . (1 —>{ask, e} Int) —{e} Int

Effect variables are verbose

Adding traditional effect types to existing languages requires significant rewriting of
type signatures such as app

Can we get rid of these effect variables?

Our Proposal: Modal Effect Types

Modal Effect Types

°# Let us take a closer look at app

app : Ve . (Int =»4{e} Int) —1ie} Int —={e} Int
app f x = T X

- p——— e e —

_ a—— - -
I ———
e —
/

@ This is unfairfClhe app itself does not even mention any effects.2

g Sy

== — n = _ E— ———— -
— —— . — . - e ==

& Why don't we just track this fact?
w But effect types are entangled with function arrows in a traditional effect system

. Let's decouple effect types from function arrows

Ambient Effect Context

Typing judgements track effect contexts, 1.e., effects provided by the context

o E ambient effect context (part of the typing judgement)
~/ \—

app : (Int =» Int) — Int — Int
————— e e —

a E o E

Both the argument and result of app share the same effect context E

Absolute Modality

An absolute modality [F | specifies an effect context F in a type

app : (Int =» Int) — Int — Int

Absolute Modality

An absolute modality [F | specifies an effect context F in a type

a E

-
: ([1((Int - Int) - Int — Int)
e——— ———

[] overwrites E to empty)

app Itself is a pure function

The empty absolute modality | | indicates that app uses no effects

By subeffecting we can still apply app in any effect context E

Absolute Modality

Similarly for 1nc

. Int —>{ask, e} Int

inc : V e
= X + do ask ()

1NC X

Absolute Modality

Similarly for 1nc

S e I — —
o - 2

7 N
iy N I I
\ v
\-
Y o
> .'

The absolute modality [ask] indicates that inc uses ask

By subeffecting we can still apply inc in any effect context E containing ask

Relative Modality

A relative modality <F> specifies an extension F to the effect context

ans : Ve . (1 —>{ask, e} Int) —{e} Int

Relative Modality

A relative modality <F> specifies an extension F to the effect context

a E

y\—

s Qask>(1 — Int) — Int

@ ask, E

<ask> adds ask to
the effect context

The relative modality <ask> indicates that ans' argument may additionally use ask

meanwhile can still use effects E from the context

In other words, ans handles ask

Relative Modality

A relative modality <F> specifies an extension F to the effect context

a)

~\—

ans : [Jl(<ask>(1 = Int) = Int)
—— ———

2 ask

The absolute modality [| indicates that ans itself does not use effects

By sub-effecting we may still use ans with other effects

Modal Effect Types

inc : [ask](Int — Int)
app : []1((Int —» Int) — Int — Int)
ans : [](<ask>(1 = Int) — Int)

Modal Effect Types

inc : [ask](Int — Int)
app : (Int =» Int) — Int — Int
ans : <ask>(1 — Int) — Int

Convention: global function definitions implicitly have a [|

Modal Effect Types

inc : [ask](Int — Int)
app : (Int =» Int) — Int — Int
ans : <ask>(1 — Int) — Int

Compose them together

W ans (fun () — app inc 42)
/9 : Int

A Case Study:
Cooperative Concurrency &

Cooperative Concurrency &

With traditional effect types:

effect Coop = fork : 1 = Bool | suspend : 1 = 1
data Proc e = proc (List (Proc e) —{e} 1)

-- push a process into a queue
push : V e . Proc —{e} List Proc —{e} List Proc

-—— run the first process 1n the queue
next : V e . List Proc —{e} 1

schedule : VYV e . (1 —>{Coop, e} 1) —>{e} List Proc —>{e} 1
schedule m = handle m () with
return () = fun g — next (q,
suspend () r = fun g = next (push (proc (r ())) q),
fork () r = fun q > r true (push (proc (r false)) q)

Cooperative Concurrency &

With modal effect types:

effect Coop = fork : 1 = Bool | suspend : 1 = 1
data Proc = proc (List Proc — 1)

-— push a process 1nto a queue
push : [](Proc — List Proc — List Proc)

-— run the first process 1n the queue
next : []J(List Proc — 1)

schedule : [1(<Coop>(1 = 1) = List Proc — 1)
schedule m = handle m () with
return () = fun g — next q,
suspend () r = fun g — next (push (proc (r ())) q),
fork () r = fun q > r true (push (proc (r false)) q)

A Quick Look at the Core Calculus »»

A Tale of Locks & and Keys 4

mod introduces a modality and a lock

P @ the ambient effect context is
[, fi_[ask] = fun x =5 f x : Int = Int(a ask) overwritten to ask

e
e et — -~

I (fun x = f x) : [ask](Int — Int) @ E

locks control usage of variables

™, modality transformation: the key # to the lock

CT1 = [ask] D

f : [] Int - Int, _[ask] f : Int & Int @ ask

I — V : [](Int = Int) @ E [, f:[]1Int > Int M M: AQE

——

et mod_[] >)
P—— ~" 1let mod eliminates a modality and
Introduces a binder with a modality

More In the Paper

More In the Paper

MET: a core calculus with modal effect types

* Based on multimodal type theory (Gratzer et al. 2020)

* Inspired by languages Frank (Lindley et al. 2017) and Effekt (Brachthauser et al. 2020)

Masking <E > (the full syntax of relative modality is <E | F>)
Type soundness and effect safety

Extensions to MET: parametric polymorphism, ADT

Simple bidirectional typing for MET

Encoding a fragment of traditional effect types into MET without the
requirement of effect variables

Ongoing and Future Work

» Rows and Capabilities as Modal Effects.
» a uniform framework for encoding different effect systems
» conditionally accepted by POPL

+ Better type inference for modal types

» Formal comparison with capture tracking of Scala

+ Denotational semantics and logical relations

» Higher-order effects

Takeaway

Do not track effects on every function arrow -- track them when needed!

inc : V e . Int —>{ask, e} Int

app : Ve . (Int —»1{e} Int) —1i{e} Int —{e} Int

ans : ¥V e . (1 —>4{ask, e} Int) —{e} Int

data Proc e = proc (List (Proc e) —{e} 1)

push : ¥V e . Proc —{e} List Proc —{e} List Proc

next : Vv e . List Proc —{e} 1

schedule : ¥V e . (1 —>{Coop, e} 1) —{e} List Proc —1{ie} 1

Takeaway

Do not track effects on every function arrow -- track them when needed!

inc : [ask](Int — Int)

app : [1((Int = Int) = Int = Int)

ans : [](<ask>(1 = Int) = Int)

data Proc = proc (List Proc — 1)

push : [](Proc — List Proc — List Proc)
next : [](List Proc — 1)

schedule : [](<Coop>(1 = 1) = List Proc — 1)

(PS. I'm looRing for a postdoc position)

