
1

Rows and Capabilities as Modal Effects

Wenhao Tang 1 Sam Lindley 1

HOPE workshop, Singapore, 12th Oct 2025

Effects and Effect Types

Effects are the way programs interact with their environment

Including I/O, concurrency, exceptions, nondeterminism, probability

Effect types statically tracks use of effects

Many recent practical effect systems as based on rows or capabilities.

1

Row-Based Effect Types

Row-Based Effect Types à la Koka

System F𝜖 formalises Koka’s row-based effect system1

Key idea: annotate each function arrow with a row of effects

𝐴 →𝐸 𝐵

A function that may invokes effects in 𝐸 when applied

1Xie, Brachthäuser, Hillerström, Schuster, and Leijen, “Effect handlers, evidently”, 2020.

2

A First-Order Effectful Function

An operation yield : Int ⇒ 1

𝜆yield𝑥Int.do yield 𝑥 : Int →yield 1

Typing derivation

T-ABS

T-DO
yield : Int ⇒ 1 Γ, 𝑥 : Int ⊢ 𝑥 : Int

Γ, 𝑥 : Int ⊢ do yield 𝑥 : 1 | yield

Γ ⊢ 𝜆yield𝑥Int.do yield 𝑥 : Int →yield 1

Functions are pure; when creating a function, we must track the effects they may use
when applied in its type.

3

A First-Order Effectful Function

An operation yield : Int ⇒ 1

𝜆yield𝑥Int.do yield 𝑥 : Int →yield 1

Typing derivation

T-ABS

T-DO
yield : Int ⇒ 1 Γ, 𝑥 : Int ⊢ 𝑥 : Int

Γ, 𝑥 : Int ⊢ do yield 𝑥 : 1 | yield

Γ ⊢ 𝜆yield𝑥Int.do yield 𝑥 : Int →yield 1

Functions are pure; when creating a function, we must track the effects they may use
when applied in its type.

3

Parametric Effect Polymorphism

A higher-order application function

𝜆𝑓 Int→
𝐸1.𝜆𝐸𝑥Int.𝑓 𝑥 : (Int →𝐸 1) → Int →𝐸 1

Abstract over the effect type 𝐸 via an effect variable 𝜀

Λ𝜀.𝜆𝑓 Int→
𝜀1.𝜆𝜀𝑥Int.𝑓 𝑥 : ∀𝜀.(Int →𝜀 1) → Int →𝜀 1

4

Parametric Effect Polymorphism

A higher-order application function

𝜆𝑓 Int→
𝐸1.𝜆𝐸𝑥Int.𝑓 𝑥 : (Int →𝐸 1) → Int →𝐸 1

Abstract over the effect type 𝐸 via an effect variable 𝜀

Λ𝜀.𝜆𝑓 Int→
𝜀1.𝜆𝜀𝑥Int.𝑓 𝑥 : ∀𝜀.(Int →𝜀 1) → Int →𝜀 1

4

Capability-Based Effect Types

Capability-Based Effect Types à la Effekt

System C formalises Effekt’s capability-based effect system2

Key idea: treat effects as capabilities provided by the context

(𝐴, 𝑓 : 𝑇) ⇒ 𝐵

A block (i.e., second-class function) binds capabilities 𝑓 : 𝑇 and may use them as well as
other capabilities from the context

2Brachthäuser, Schuster, Lee, and Boruch-Gruszecki, “Effects, capabilities, and boxes: from scope-based
reasoning to type-based reasoning and back”, 2022.

5

Blocks

System C distinguishes between first-class values and second-class blocks (i.e., functions)

A higher-order block

app𝐶 � {(𝑥 : Int, 𝑓 : Int ⇒ 1) ⇒ 𝑓 (𝑥)} : (Int, 𝑓 : Int ⇒ 1) ⇒ 1

• the second-class block parameter 𝑓 : Int ⇒ 1 is a capability
• blocks must be fully applied and cannot be passed/stored as values
• the block body can use capabilities from the context

y :∗ Int ⇒ 1 ⊢ {(𝑥 : Int, 𝑓 : Int ⇒ 1) ⇒ y(𝑥)} : (Int, 𝑓 : Int ⇒ 1) ⇒ 1

6

Boxing Blocks into First-Class Values

In order to define a curried app𝐶 we need to turn blocks into first-class values

app′𝐶 � {(𝑓 : Int ⇒ 1) ⇒ box {(𝑥 : Int) ⇒ 𝑓 (𝑥)}} : (𝑓 : Int ⇒ 1) ⇒ (Int ⇒ 1 at {𝑓 })

• box · · · turns a block into a first-class value
• the result type Int ⇒ 1 at {𝑓 } tracks that this boxed block uses the capability 𝑓

7

Boxing Blocks into First-Class Values

In order to define a curried app𝐶 we need to turn blocks into first-class values

app′𝐶 � {(𝑓 : Int ⇒ 1) ⇒ box {(𝑥 : Int) ⇒ 𝑓 (𝑥)}} : (𝑓 : Int ⇒ 1) ⇒ (Int ⇒ 1 at {𝑓 })

• box · · · turns a block into a first-class value

• the result type Int ⇒ 1 at {𝑓 } tracks that this boxed block uses the capability 𝑓

7

Boxing Blocks into First-Class Values

In order to define a curried app𝐶 we need to turn blocks into first-class values

app′𝐶 � {(𝑓 : Int ⇒ 1) ⇒ box {(𝑥 : Int) ⇒ 𝑓 (𝑥)}} : (𝑓 : Int ⇒ 1) ⇒ (Int ⇒ 1 at {𝑓 })

• box · · · turns a block into a first-class value
• the result type Int ⇒ 1 at {𝑓 } tracks that this boxed block uses the capability 𝑓

7

Unifying / Comparing Rows and Capabilities?

Yoshioka et al.3 unify different row-based effect systems

It is non-obvious how to systematically translate between System F𝜖 and System C

System F𝜖 : 𝐴 →𝐸 𝐵

System C : (𝐴, 𝑓 : 𝑇) ⇒ 𝐵

The main problem: effect tracking is deeply entangled with other type system features
such as function types

3Yoshioka, Sekiyama, and Igarashi, “Abstracting Effect Systems for Algebraic Effect Handlers”, 2024.

8

A Detour: CBV, CBN, and CBPV

Translating between CBV and CBN is rather involved ...

... because when to suspend and force computations is entangled with functions

CBPV smoothly subsumes both by decoupling thunking and forcing from function
abstraction and application

Why not decouple effect tracking from function types?

9

A Detour: CBV, CBN, and CBPV

Translating between CBV and CBN is rather involved ...

... because when to suspend and force computations is entangled with functions

CBPV smoothly subsumes both by decoupling thunking and forcing from function
abstraction and application

Why not decouple effect tracking from function types?

9

A Detour: CBV, CBN, and CBPV

Translating between CBV and CBN is rather involved ...

... because when to suspend and force computations is entangled with functions

CBPV smoothly subsumes both by decoupling thunking and forcing from function
abstraction and application

Why not decouple effect tracking from function types?

9

A Detour: CBV, CBN, and CBPV

Translating between CBV and CBN is rather involved ...

... because when to suspend and force computations is entangled with functions

CBPV smoothly subsumes both by decoupling thunking and forcing from function
abstraction and application

Why not decouple effect tracking from function types?

9

Modal Effect Types

Modal Effect Types

Modal effect types (MET) is a recent effect system based on Multimodal Type Theory4 and
inspired by languages Frank5 and Effekt6

4Gratzer, Kavvos, Nuyts, and Birkedal, “Multimodal Dependent Type Theory”, 2020.
5Lindley, McBride, and McLaughlin, “Do Be Do Be Do”, 2017.
6Brachthäuser, Schuster, and Ostermann, “Effects as capabilities: effect handlers and lightweight effect
polymorphism”, 2020.

10

Modal Effect Types

Modal effect types (MET) is a recent effect system based on Multimodal Type Theory4 and
inspired by languages Frank5 and Effekt6

4Gratzer, Kavvos, Nuyts, and Birkedal, “Multimodal Dependent Type Theory”, 2020.
5Lindley, McBride, and McLaughlin, “Do Be Do Be Do”, 2017.
6Brachthäuser, Schuster, and Ostermann, “Effects as capabilities: effect handlers and lightweight effect
polymorphism”, 2020.

10

Modal Effect Types

Modal effect types (MET) is a recent effect system based on Multimodal Type Theory4 and
inspired by languages Frank5 and Effekt6

MET decouples effect tracking from standard type and term constructs via modalities

4Gratzer, Kavvos, Nuyts, and Birkedal, “Multimodal Dependent Type Theory”, 2020.
5Lindley, McBride, and McLaughlin, “Do Be Do Be Do”, 2017.
6Brachthäuser, Schuster, and Ostermann, “Effects as capabilities: effect handlers and lightweight effect
polymorphism”, 2020.

10

Modal Effect Types

Modal effect types (MET) is a recent effect system based on Multimodal Type Theory4 and
inspired by languages Frank5 and Effekt6

MET decouples effect tracking from standard type and term constructs via modalities

The decoupling gives us the flexibility and expressivity to compositionally encode
different effect tracking mechanisms.

4Gratzer, Kavvos, Nuyts, and Birkedal, “Multimodal Dependent Type Theory”, 2020.
5Lindley, McBride, and McLaughlin, “Do Be Do Be Do”, 2017.
6Brachthäuser, Schuster, and Ostermann, “Effects as capabilities: effect handlers and lightweight effect
polymorphism”, 2020.

10

Modal Effect Types

Modal effect types (MET) is a recent effect system based on Multimodal Type Theory4 and
inspired by languages Frank5 and Effekt6

MET decouples effect tracking from standard type and term constructs via modalities

The decoupling gives us the flexibility and expressivity to compositionally encode
different effect tracking mechanisms.

Based on MET, we give a uniform framework MET(X) for encoding and comparing different
effect systems
4Gratzer, Kavvos, Nuyts, and Birkedal, “Multimodal Dependent Type Theory”, 2020.
5Lindley, McBride, and McLaughlin, “Do Be Do Be Do”, 2017.
6Brachthäuser, Schuster, and Ostermann, “Effects as capabilities: effect handlers and lightweight effect
polymorphism”, 2020.

10

Effect Contexts

A typing judgement tracks the ambient effect context

⊢ 𝜆𝑥Int.do yield 𝑥 : Int → 1 @ yield

The whole term shares the ambient effect context

⊢ (𝜆𝑓 Int→1.𝜆𝑥Int.𝑓 𝑥) (𝜆𝑥Int.do yield 𝑥) : Int → 1 @ yield

A natural notion of sub-effecting

⊢ 𝜆𝑥Int.do yield 𝑥 : Int → 1 @ yield, ask

11

Effect Contexts

A typing judgement tracks the ambient effect context

⊢ 𝜆𝑥Int.do yield 𝑥 : Int → 1 @ yield

The whole term shares the ambient effect context

⊢ (𝜆𝑓 Int→1.𝜆𝑥Int.𝑓 𝑥) (𝜆𝑥Int.do yield 𝑥) : Int → 1 @ yield

A natural notion of sub-effecting

⊢ 𝜆𝑥Int.do yield 𝑥 : Int → 1 @ yield, ask

11

Effect Contexts

A typing judgement tracks the ambient effect context

⊢ 𝜆𝑥Int.do yield 𝑥 : Int → 1 @ yield

The whole term shares the ambient effect context

⊢ (𝜆𝑓 Int→1.𝜆𝑥Int.𝑓 𝑥) (𝜆𝑥Int.do yield 𝑥) : Int → 1 @ yield

A natural notion of sub-effecting

⊢ 𝜆𝑥Int.do yield 𝑥 : Int → 1 @ yield, ask

11

Modalities

An absolute modality [𝐸] changes the ambient effect context to 𝐸 ([𝐸] (𝐹) = 𝐸)

🍋[yield] ⊢ 𝜆𝑥Int.do yield 𝑥 : Int → 1 @ yield

⊢ mod[yield] (𝜆𝑥Int.do yield 𝑥) : [yield] (Int → 1) @ 𝐹

mod[yield] introduces a lock 🍋[yield] to the context of the premise 7

A relative modality ⟨𝐸⟩ adds effects 𝐸 to the ambient effect context (⟨𝐸⟩(𝐹) = 𝐸, 𝐹)

🍋⟨yield⟩ ⊢ 𝜆𝑥Int.do yield (do ask ()) : Int → 1 @ yield, ask

⊢ mod⟨yield⟩ (𝜆𝑥Int.do yield (do ask ())) : ⟨yield⟩(Int → 1) @ ask

7XeLaTeX complains about my lock symbol so I have to use a lemon instead

12

Modalities

An absolute modality [𝐸] changes the ambient effect context to 𝐸 ([𝐸] (𝐹) = 𝐸)

🍋[yield] ⊢ 𝜆𝑥Int.do yield 𝑥 : Int → 1 @ yield

⊢ mod[yield] (𝜆𝑥Int.do yield 𝑥) : [yield] (Int → 1) @ 𝐹

mod[yield] introduces a lock 🍋[yield] to the context of the premise 7

A relative modality ⟨𝐸⟩ adds effects 𝐸 to the ambient effect context (⟨𝐸⟩(𝐹) = 𝐸, 𝐹)

🍋⟨yield⟩ ⊢ 𝜆𝑥Int.do yield (do ask ()) : Int → 1 @ yield, ask

⊢ mod⟨yield⟩ (𝜆𝑥Int.do yield (do ask ())) : ⟨yield⟩(Int → 1) @ ask

7XeLaTeX complains about my lock symbol so I have to use a lemon instead

12

Locks

Locks control the accessibility of variables

An invalid judgement

𝑓 : Int → 1 ⊬ mod[yield] (𝜆𝑥Int.𝑓 𝑥) : [yield] (Int → 1) @ ask

Because its expected premise does not hold

𝑓 : Int → 1,🍋[yield] ⊬ 𝜆𝑥Int.𝑓 𝑥 : Int → 1 @ yield

13

Locks

Locks control the accessibility of variables

An invalid judgement

𝑓 : Int → 1 ⊬ mod[yield] (𝜆𝑥Int.𝑓 𝑥) : [yield] (Int → 1) @ ask

Because its expected premise does not hold

𝑓 : Int → 1,🍋[yield] ⊬ 𝜆𝑥Int.𝑓 𝑥 : Int → 1 @ yield

13

Modality Elimination

We can make the premise well-typed by annotating the binding of 𝑓 with [] (or [yield])

𝑓 :[] Int → 1,🍋[yield] ⊢ 𝜆𝑥Int.𝑓 𝑥 : Int → 1 @ yield

Such a binding is introduced by modality elimination (the default annotation is ⟨⟩)

⊢ 𝑉 : [] (Int → 1) 𝑓 :[] Int → 1 ⊢ 𝑀 : 𝐴 @ yield

⊢ let mod[] 𝑓 = 𝑉 in 𝑀 : 𝐴 @ yield

14

Modality Elimination

We can make the premise well-typed by annotating the binding of 𝑓 with [] (or [yield])

𝑓 :[] Int → 1,🍋[yield] ⊢ 𝜆𝑥Int.𝑓 𝑥 : Int → 1 @ yield

Such a binding is introduced by modality elimination (the default annotation is ⟨⟩)

⊢ 𝑉 : [] (Int → 1) 𝑓 :[] Int → 1 ⊢ 𝑀 : 𝐴 @ yield

⊢ let mod[] 𝑓 = 𝑉 in 𝑀 : 𝐴 @ yield

14

Modality Transformations

How does the type system decide that 𝑓 :[] Int → 1 can be used after 🍋[yield]?

T-VAR
[] ⇒ [yield]

𝑓 :[] Int → 1,🍋[yield], 𝑥 : Int ⊢ 𝑓 : Int → 1 @ yield

Intuitively, 𝜇 ⇒ 𝜈 allows us to use a variable 𝑓 :𝜇 𝐴 after a lock 🍋𝜈

Examples:

• [𝐸] ⇒ [𝐹] holds if 𝐸 ⩽ 𝐹

• [] ⇒ 𝜇 holds for any 𝜇
• ⟨⟩ ⇒ [𝐸] does not hold for any 𝐸

15

Modality Transformations

How does the type system decide that 𝑓 :[] Int → 1 can be used after 🍋[yield]?

T-VAR
[] ⇒ [yield]

𝑓 :[] Int → 1,🍋[yield], 𝑥 : Int ⊢ 𝑓 : Int → 1 @ yield

Intuitively, 𝜇 ⇒ 𝜈 allows us to use a variable 𝑓 :𝜇 𝐴 after a lock 🍋𝜈

Examples:

• [𝐸] ⇒ [𝐹] holds if 𝐸 ⩽ 𝐹

• [] ⇒ 𝜇 holds for any 𝜇
• ⟨⟩ ⇒ [𝐸] does not hold for any 𝐸

15

Modality Transformations

How does the type system decide that 𝑓 :[] Int → 1 can be used after 🍋[yield]?

T-VAR
[] ⇒ [yield]

𝑓 :[] Int → 1,🍋[yield], 𝑥 : Int ⊢ 𝑓 : Int → 1 @ yield

Intuitively, 𝜇 ⇒ 𝜈 allows us to use a variable 𝑓 :𝜇 𝐴 after a lock 🍋𝜈

Examples:

• [𝐸] ⇒ [𝐹] holds if 𝐸 ⩽ 𝐹

• [] ⇒ 𝜇 holds for any 𝜇
• ⟨⟩ ⇒ [𝐸] does not hold for any 𝐸

15

Modality Composition

What if there are multiple locks?

T-VAR
𝜇 ⇒ 𝜈1 ◦ 𝜈2 ◦ 𝜈3

𝑓 :𝜇 𝐴,🍋𝜈1,🍋𝜈2,🍋𝜈3 ⊢ 𝑓 : 𝐴 @ 𝐸

Modality composition 𝜇 ◦ 𝜈 is defined naturally as

𝜇 ◦ [𝐸] = [𝐸] [𝐸] ◦ ⟨𝐷⟩ = [𝐷, 𝐸] ⟨𝐷1⟩ ◦ ⟨𝐷2⟩ = ⟨𝐷2, 𝐷1⟩

16

Modality Composition

What if there are multiple locks?

T-VAR
𝜇 ⇒ 𝜈1 ◦ 𝜈2 ◦ 𝜈3

𝑓 :𝜇 𝐴,🍋𝜈1,🍋𝜈2,🍋𝜈3 ⊢ 𝑓 : 𝐴 @ 𝐸

Modality composition 𝜇 ◦ 𝜈 is defined naturally as

𝜇 ◦ [𝐸] = [𝐸] [𝐸] ◦ ⟨𝐷⟩ = [𝐷, 𝐸] ⟨𝐷1⟩ ◦ ⟨𝐷2⟩ = ⟨𝐷2, 𝐷1⟩

16

Effect Theories

Different effect systems collect effects as different structures such as simple rows,
scoped rows, sets, multisets

This is orthogonal to their effect tracking mechanisms

MET(X) is parameterised by an effect theory X which defines the structure of effect
collections, following Morris and McKinna8 and Yoshioka et al.9

For instance, Rscp for scoped rows and S for sets

We use MET(Rscp) to encode System F𝜖 and MET(S) to encode System C

8Morris and McKinna, “Abstracting Extensible Data Types: Or, Rows by Any Other Name”, 2019.
9Yoshioka, Sekiyama, and Igarashi, “Abstracting Effect Systems for Algebraic Effect Handlers”, 2024.

17

Effect Theories

Different effect systems collect effects as different structures such as simple rows,
scoped rows, sets, multisets

This is orthogonal to their effect tracking mechanisms

MET(X) is parameterised by an effect theory X which defines the structure of effect
collections, following Morris and McKinna8 and Yoshioka et al.9

For instance, Rscp for scoped rows and S for sets

We use MET(Rscp) to encode System F𝜖 and MET(S) to encode System C

8Morris and McKinna, “Abstracting Extensible Data Types: Or, Rows by Any Other Name”, 2019.
9Yoshioka, Sekiyama, and Igarashi, “Abstracting Effect Systems for Algebraic Effect Handlers”, 2024.

17

Effect Theories

Different effect systems collect effects as different structures such as simple rows,
scoped rows, sets, multisets

This is orthogonal to their effect tracking mechanisms

MET(X) is parameterised by an effect theory X which defines the structure of effect
collections, following Morris and McKinna8 and Yoshioka et al.9

For instance, Rscp for scoped rows and S for sets

We use MET(Rscp) to encode System F𝜖 and MET(S) to encode System C

8Morris and McKinna, “Abstracting Extensible Data Types: Or, Rows by Any Other Name”, 2019.
9Yoshioka, Sekiyama, and Igarashi, “Abstracting Effect Systems for Algebraic Effect Handlers”, 2024.

17

Rows as Modal Effects

Encoding System F𝜖 into MET(Rscp)

Recall that effect annotations on function arrows 𝐴 →𝐸 𝐵 fully specify the effects

Absolute modalities also fully specify the effects

⟦𝐴 →𝐸 𝐵⟧ = [⟦𝐸⟧](⟦𝐴⟧ → ⟦𝐵⟧)

Examples

•
⟦Int →yield 1⟧ = [yield] (Int → 1)

⟦𝜆yield𝑥Int.do yield 𝑥⟧ = mod[yield] (𝜆𝑥Int.do yield 𝑥)
•

⟦∀𝜀.(Int →𝜀 1) → Int →𝜀 1⟧ = ∀𝜀.[] ([𝜀] (Int → 1) → [𝜀] (Int → 1))
⟦Λ𝜀.𝜆𝑓 Int→𝜀1.𝜆𝜀𝑥Int.𝑓 𝑥⟧ = Λ𝜀.mod[] (𝜆𝑓 [𝜀] (Int→1) .mod[𝜀] (𝜆𝑥Int.

let mod[𝜀] 𝑓 ′ = 𝑓 in 𝑓 ′ 𝑥))

18

Encoding System F𝜖 into MET(Rscp)

Recall that effect annotations on function arrows 𝐴 →𝐸 𝐵 fully specify the effects

Absolute modalities also fully specify the effects

⟦𝐴 →𝐸 𝐵⟧ = [⟦𝐸⟧](⟦𝐴⟧ → ⟦𝐵⟧)

Examples

•
⟦Int →yield 1⟧ = [yield] (Int → 1)

⟦𝜆yield𝑥Int.do yield 𝑥⟧ = mod[yield] (𝜆𝑥Int.do yield 𝑥)
•

⟦∀𝜀.(Int →𝜀 1) → Int →𝜀 1⟧ = ∀𝜀.[] ([𝜀] (Int → 1) → [𝜀] (Int → 1))
⟦Λ𝜀.𝜆𝑓 Int→𝜀1.𝜆𝜀𝑥Int.𝑓 𝑥⟧ = Λ𝜀.mod[] (𝜆𝑓 [𝜀] (Int→1) .mod[𝜀] (𝜆𝑥Int.

let mod[𝜀] 𝑓 ′ = 𝑓 in 𝑓 ′ 𝑥))

18

Encoding System F𝜖 into MET(Rscp)

Recall that effect annotations on function arrows 𝐴 →𝐸 𝐵 fully specify the effects

Absolute modalities also fully specify the effects

⟦𝐴 →𝐸 𝐵⟧ = [⟦𝐸⟧](⟦𝐴⟧ → ⟦𝐵⟧)

Examples

•
⟦Int →yield 1⟧ = [yield] (Int → 1)

⟦𝜆yield𝑥Int.do yield 𝑥⟧ = mod[yield] (𝜆𝑥Int.do yield 𝑥)
•

⟦∀𝜀.(Int →𝜀 1) → Int →𝜀 1⟧ = ∀𝜀.[] ([𝜀] (Int → 1) → [𝜀] (Int → 1))
⟦Λ𝜀.𝜆𝑓 Int→𝜀1.𝜆𝜀𝑥Int.𝑓 𝑥⟧ = Λ𝜀.mod[] (𝜆𝑓 [𝜀] (Int→1) .mod[𝜀] (𝜆𝑥Int.

let mod[𝜀] 𝑓 ′ = 𝑓 in 𝑓 ′ 𝑥))
18

Capabilities as Modal Effects

Encoding System C into MET(S)

app𝐶 � {(𝑥 : Int, 𝑓 : Int ⇒ 1) ⇒ 𝑓 (𝑥)} : (Int, 𝑓 : Int ⇒ 1) ⇒ 1
app′𝐶 � {(𝑓 : Int ⇒ 1) ⇒ box {(𝑥 : Int) ⇒ 𝑓 (𝑥)}} : (𝑓 : Int ⇒ 1) ⇒ (Int ⇒ 1 at {𝑓 })

y :∗ Int ⇒ 1 ⊢ {(𝑥 : Int, 𝑓 : Int ⇒ 1) ⇒ y(𝑥)} : (Int, 𝑓 : Int ⇒ 1) ⇒ 1

A block construction in System C does several things:

(1) bind a both term- and type-level capability 𝑓

(2) 𝑓 may be invoked in the block body
(3) any capability from the context may also be invoked in the block body

19

Encoding Block Constructions

A block construction in System C does several things:

(1) bind a both term- and type-level capability 𝑓

(2) 𝑓 may be invoked in the block body
(3) any capability from the context may also be invoked in the block body

For (1), we introduce a type-level variable 𝑓 ∗

For (2) and (3), we use the relative modality ⟨𝑓 ∗⟩

⟦(Int, 𝑓 : Int ⇒ 1) ⇒ 1⟧ = ∀𝑓 ∗. ⟨𝑓 ∗⟩(Int → [𝑓 ∗] (Int → 1) → 1)

⟦{(𝑥 : Int, 𝑓 : Int ⇒ 1) ⇒ 𝑓 (𝑥)}⟧
= Λ𝑓 ∗. mod⟨𝑓 ∗ ⟩ (𝜆𝑥Int.𝜆𝑓 [𝑓

∗] (Int→1) .let mod[𝑓 ∗] 𝑓 = 𝑓 in 𝑓 𝑥)

20

Encoding Block Constructions

A block construction in System C does several things:

(1) bind a both term- and type-level capability 𝑓

(2) 𝑓 may be invoked in the block body
(3) any capability from the context may also be invoked in the block body

For (1), we introduce a type-level variable 𝑓 ∗

For (2) and (3), we use the relative modality ⟨𝑓 ∗⟩

⟦(Int, 𝑓 : Int ⇒ 1) ⇒ 1⟧ = ∀𝑓 ∗. ⟨𝑓 ∗⟩(Int → [𝑓 ∗] (Int → 1) → 1)

⟦{(𝑥 : Int, 𝑓 : Int ⇒ 1) ⇒ 𝑓 (𝑥)}⟧
= Λ𝑓 ∗. mod⟨𝑓 ∗ ⟩ (𝜆𝑥Int.𝜆𝑓 [𝑓

∗] (Int→1) .let mod[𝑓 ∗] 𝑓 = 𝑓 in 𝑓 𝑥)

20

Encoding Block Constructions

A block construction in System C does several things:

(1) bind a both term- and type-level capability 𝑓

(2) 𝑓 may be invoked in the block body
(3) any capability from the context may also be invoked in the block body

For (1), we introduce a type-level variable 𝑓 ∗

For (2) and (3), we use the relative modality ⟨𝑓 ∗⟩

⟦(Int, 𝑓 : Int ⇒ 1) ⇒ 1⟧ = ∀𝑓 ∗. ⟨𝑓 ∗⟩(Int → [𝑓 ∗] (Int → 1) → 1)

⟦{(𝑥 : Int, 𝑓 : Int ⇒ 1) ⇒ 𝑓 (𝑥)}⟧
= Λ𝑓 ∗. mod⟨𝑓 ∗ ⟩ (𝜆𝑥Int.𝜆𝑓 [𝑓

∗] (Int→1) .let mod[𝑓 ∗] 𝑓 = 𝑓 in 𝑓 𝑥)
20

Encoding Boxes

Boxes in System C are encoded as absolute modalities

⟦(𝑓 : Int ⇒ 1) ⇒ (Int ⇒ 1 at {𝑓 })⟧ = ∀𝑓 ∗. ⟨𝑓 ∗⟩([𝑓 ∗] (Int → 1) → [𝑓 ∗] (Int → 1))

⟦{(𝑓 : Int ⇒ 1) ⇒ box {(𝑥 : Int) ⇒ 𝑓 (𝑥)}}⟧
= Λ𝑓 ∗. mod⟨𝑓 ∗ ⟩ (𝜆𝑓 [𝑓

∗] (Int→1) .let mod[𝑓 ∗] 𝑓 = 𝑓 in mod[𝑓 ∗] (𝜆𝑥 .𝑓 𝑥))

21

Encoding Boxes

Boxes in System C are encoded as absolute modalities

⟦(𝑓 : Int ⇒ 1) ⇒ (Int ⇒ 1 at {𝑓 })⟧ = ∀𝑓 ∗. ⟨𝑓 ∗⟩([𝑓 ∗] (Int → 1) → [𝑓 ∗] (Int → 1))

⟦{(𝑓 : Int ⇒ 1) ⇒ box {(𝑥 : Int) ⇒ 𝑓 (𝑥)}}⟧
= Λ𝑓 ∗. mod⟨𝑓 ∗ ⟩ (𝜆𝑓 [𝑓

∗] (Int→1) .let mod[𝑓 ∗] 𝑓 = 𝑓 in mod[𝑓 ∗] (𝜆𝑥 .𝑓 𝑥))

21

Comparing Rows and Capabilities

By encoding both System F𝜖 and System C into MET(X), we can easily compare them

System F𝜖 to MET(Rscp) : ⟦𝐴 →𝐸 𝐵⟧ = [⟦𝐸⟧](⟦𝐴⟧ → ⟦𝐵⟧)
⟦∀𝜀. 𝐴⟧ = ∀𝜀. ⟦𝐴⟧

System C to MET(S) : ⟦(𝐴, 𝑓 : 𝑇) ⇒ 𝐵⟧ = ∀𝑓 ∗. ⟨𝑓 ∗⟩(⟦𝐴⟧ → [𝑓 ∗]⟦𝑇⟧ → ⟦𝐵⟧)
⟦𝑇 at 𝐶⟧ = [⟦𝐶⟧]⟦𝑇⟧

Two main observations:

• different top-level modalities
• effect variables

22

If I Still Have Time ...

Handlers and Their Encodings

An effect handler for yield

handle (do yield 42;do yield 37; 0) with {yield 𝑝 𝑟 ↦→ 𝑝 + 𝑟 ()}

Encoding effect handlers in System F𝜖 is straightforward

Encoding effect handlers in System C is more interesting as capability-based effect
systems are typically designed for lexically-scoped / named handlers

try {yInt⇒1 ⇒ y(42); y(37); 0} with {𝑝 𝑟 ↦→ 𝑝 + 𝑟 (())}

The handler introduces the capability y for invoking the operation

23

Handlers and Their Encodings

An effect handler for yield

handle (do yield 42;do yield 37; 0) with {yield 𝑝 𝑟 ↦→ 𝑝 + 𝑟 ()}

Encoding effect handlers in System F𝜖 is straightforward

Encoding effect handlers in System C is more interesting as capability-based effect
systems are typically designed for lexically-scoped / named handlers

try {yInt⇒1 ⇒ y(42); y(37); 0} with {𝑝 𝑟 ↦→ 𝑝 + 𝑟 (())}

The handler introduces the capability y for invoking the operation

23

Encoding Handlers of System C in MET(S)

try {yInt⇒1 ⇒ y(42); y(37); 0} with {𝑝 𝑟 ↦→ 𝑝 + 𝑟 (())}

There is a semantics gap between Plotkin and Pretnar’s handlers and named handlers.

Instead of introducing named handlers to MET(X), we use a minimal extension of local
labels, inspired by Vilhena and Pottier10 and Biernacki et al.11

local ℓy : Int ⇒ 1 in handle[⟦𝐶⟧]
(𝜆y [ℓy] (Int→1) .let mod[ℓy] ŷ = y in ŷ 42; ŷ 37; 0) (mod[ℓy] (𝜆𝑥Int.do ℓy 𝑥))
with 𝐻 ′ : Int @ ⟦𝐶⟧

We simulate the capability via the function (mod[ℓy] (𝜆𝑥Int.do ℓy 𝑥))

10Vilhena and Pottier, “A Type System for Effect Handlers and Dynamic Labels”, 2023.
11Biernacki, Piróg, Polesiuk, and Sieczkowski, “Abstracting algebraic effects”, 2019.

24

Encoding Handlers of System C in MET(S)

try {yInt⇒1 ⇒ y(42); y(37); 0} with {𝑝 𝑟 ↦→ 𝑝 + 𝑟 (())}

There is a semantics gap between Plotkin and Pretnar’s handlers and named handlers.

Instead of introducing named handlers to MET(X), we use a minimal extension of local
labels, inspired by Vilhena and Pottier10 and Biernacki et al.11

local ℓy : Int ⇒ 1 in handle[⟦𝐶⟧]
(𝜆y [ℓy] (Int→1) .let mod[ℓy] ŷ = y in ŷ 42; ŷ 37; 0) (mod[ℓy] (𝜆𝑥Int.do ℓy 𝑥))
with 𝐻 ′ : Int @ ⟦𝐶⟧

We simulate the capability via the function (mod[ℓy] (𝜆𝑥Int.do ℓy 𝑥))
10Vilhena and Pottier, “A Type System for Effect Handlers and Dynamic Labels”, 2023.
11Biernacki, Piróg, Polesiuk, and Sieczkowski, “Abstracting algebraic effects”, 2019.

24

Encoding a Fragment of System F𝜖 in Monomorphic MET(Rscp)

One of the main selling point of modal effect types: modular effectful programming
without effect variables

⟦1⟧𝐸 = ⟨⟩1
⟦𝐴 →𝐹 𝐵⟧𝐸 = ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩(⟦𝐴⟧𝐹 → ⟦𝐵⟧𝐹)

⟦∀.𝐴⟧𝐸 = []⟦𝐴⟧·

Come to my talk at OOPSLA, Sat 18 Oct, 10:45 - 11:00 to see more!

25

Encoding Variants of Koka and Effekt

We have also encoded

• System Ξ, an early core calculus of Effekt12

• System F𝜖+sn, an extension of System F𝜖 with named handlers and first-class names13

into MET(X)

We proved type and semantics preservation for all the encodings

12Brachthäuser, Schuster, and Ostermann, “Effects as capabilities: effect handlers and lightweight effect
polymorphism”, 2020.
13Xie, Cong, Ikemori, and Leijen, “First-class names for effect handlers”, 2022.

26

Insights for Language Designers

• Our encodings together demonstrate that modal effect types are as expressive as
row-based and capability-based effect systems we consider.

• The encodings of System C, System Ξ, and System F𝜖+sn demonstrate that we can use
local labels to simulate the relatively heavyweight feature of named handlers in
Effekt and Koka.

• The encoding of System F𝜖+sn demonstrates that first-class handler names of Koka
do not provide extra expressiveness compared to second-class local labels.

• The encoding of System C shows that instead of having a built-in form of
capabilities which can appear at both term and type levels as in Effekt, we can
simulate it by introducing an effect variable for each argument and wrap the
argument into an absolute modality with the corresponding effect variable.

• ...

27

Summary

More in the Papers

Modal Effect Types. OOPSLA 2025. Wenhao Tang, Leo White, Stephen Dolan, Daniel
Hillerström, Sam Lindley, and Anton Lorenzen.

• Focus on ergonomics: how modal effect types enable the reuse of higher-order
functions with different effects without parametric effect polymorphism

• Talk at OOPSLA, Sat 18 Oct, 10:45 - 11:00

Rows and Capabilities as Modal Effects. Conditionally accepted by POPL 2026. Wenhao
Tang and Sam Lindley.

• Focus on expressiveness: how modal effect types provide a unified framework for
encoding and comparing different effect systems

28

Ongoing and Future Work

• Better type inference for modal types (as well as first-class polymorphism)
Talk at ML family workshop, Thu 16 Oct, 13:45 - 14:15

• Higher-order effects
• Fitch-style modality elimination
• Denotational semantics and logical relations
• Other directions of encodings
• Applying the idea of relative modalities to other areas
• ...

29

Takeaways

Decouple effect tracking from standard type and term constructs

This decoupling provides the flexibility to simulate how effect tracking works in different
effect systems

System F𝜖 to MET(Rscp) : ⟦𝐴 →𝐸 𝐵⟧ = [⟦𝐸⟧](⟦𝐴⟧ → ⟦𝐵⟧)

System C to MET(S) : ⟦(𝐴, 𝑓 : 𝑇) ⇒ 𝐵⟧ = ∀𝑓 ∗.⟨𝑓 ∗⟩(⟦𝐴⟧ → [𝑓 ∗]⟦𝑇⟧ → ⟦𝐵⟧)

30

	Row-Based Effect Types
	Capability-Based Effect Types
	Modal Effect Types
	Rows as Modal Effects
	Capabilities as Modal Effects
	If I Still Have Time ...
	Summary

