
Rows and Capabilities as Modal Effects

Wenhao Tang Sam Lindley

POPL, Rennes, France, 16th Jan 2026

Effects and Effect Types

Effects are the way programs interact with their environment

Including I/O, concurrency, exceptions, nondeterminism, probability

Effect types (or effect systems) statically track use of effects in types

Many recent practical effect systems as based on rows (Koka) or capabilities (Effekt)

1

Effects and Effect Types

Effects are the way programs interact with their environment

Including I/O, concurrency, exceptions, nondeterminism, probability

Effect types (or effect systems) statically track use of effects in types

Many recent practical effect systems as based on rows (Koka) or capabilities (Effekt)

1

Rows and Capabilities

Row-Based Effect Types as in Koka

A →E B
A function that may use effects in the
row E when applied

Capability-Based Effect Types as in Effekt

(A, f : T) ⇒ B
A block (second-class function) that binds
capabilities f : T and may use them

Question: How to compare them formally and systematically?

Challenge: Their effect tracking mechanisms are entangled with function types.

2

Rows and Capabilities

Row-Based Effect Types as in Koka

A →E B
A function that may use effects in the
row E when applied

Capability-Based Effect Types as in Effekt

(A, f : T) ⇒ B
A block (second-class function) that binds
capabilities f : T and may use them

Question: How to compare them formally and systematically?

Challenge: Their effect tracking mechanisms are entangled with function types.

2

Rows and Capabilities

Row-Based Effect Types as in Koka

A →E B
A function that may use effects in the
row E when applied

Capability-Based Effect Types as in Effekt

(A, f : T) ⇒ B
A block (second-class function) that binds
capabilities f : T and may use them

Question: How to compare them formally and systematically?

Challenge: Their effect tracking mechanisms are entangled with function types.

2

Rows and Capabilities

Row-Based Effect Types as in Koka

A →E B
A function that may use effects in the
row E when applied

Capability-Based Effect Types as in Effekt

(A, f : T) ⇒ B
A block (second-class function) that binds
capabilities f : T and may use them

Question: How to compare them formally and systematically?

Challenge: Their effect tracking mechanisms are entangled with function types.

2

A Detour: CBV, CBN, and CBPV

Translating between CBV and CBN is rather involved

because when to suspend and force computations is entangled with functions

CBPV smoothly subsumes both by decoupling thunking and forcing from functions

Why not decoupling effect tracking from function types?

3

A Detour: CBV, CBN, and CBPV

Translating between CBV and CBN is rather involved

because when to suspend and force computations is entangled with functions

CBPV smoothly subsumes both by decoupling thunking and forcing from functions

Why not decoupling effect tracking from function types?

3

A Detour: CBV, CBN, and CBPV

Translating between CBV and CBN is rather involved

because when to suspend and force computations is entangled with functions

CBPV smoothly subsumes both by decoupling thunking and forcing from functions

Why not decoupling effect tracking from function types?

3

A Detour: CBV, CBN, and CBPV

Translating between CBV and CBN is rather involved

because when to suspend and force computations is entangled with functions

CBPV smoothly subsumes both by decoupling thunking and forcing from functions

Why not decoupling effect tracking from function types?

3

A Uniform Framework for Effect Types

Modal Effect Types (MET) decouple effect tracking from function types via modalities

This OOPSLA’25 paper proposes MET and shows how it provides modular effectful types
in practice without using effect polymorphism

4

A Uniform Framework for Effect Types

Modal Effect Types (MET) decouple effect tracking from function types via modalities

This OOPSLA’25 paper proposes MET and shows how it provides modular effectful types
in practice without using effect polymorphism

4

A Uniform Framework for Effect Types

Modal Effect Types (MET) decouple effect tracking from function types via modalities

Our contribution: A framework for encoding and comparing effect systems based on MET

Koka as MET: JA →E BK= [JEK](JAK → JBK)
Effekt as MET: J(A, f : T) ⇒ BK= ∀f∗.⟨f∗⟩(JAK → [f∗]JTK → JBK)

5

A Uniform Framework for Effect Types

Modal Effect Types (MET) decouple effect tracking from function types via modalities

Our contribution: A framework for encoding and comparing effect systems based on MET

Koka as MET: JA →E BK= [JEK](JAK → JBK)
Effekt as MET: J(A, f : T) ⇒ BK= ∀f∗.⟨f∗⟩(JAK → [f∗]JTK → JBK)

5

Modal Effect Types

Effect Contexts

A typing judgement tracks the ambient effect context

⊢ λx.do yield x : Int → 1 @ yield

Effect contexts propagate through types and terms

⊢ λf.λx.f x : (Int → 1) → Int → 1 @ yield

A natural notion of sub-effecting

⊢ λx.do yield x : Int → 1 @ yield, ask

6

Effect Contexts

A typing judgement tracks the ambient effect context

⊢ λx.do yield x : Int → 1 @ yield

Effect contexts propagate through types and terms

⊢ λf.λx.f x : (Int → 1) → Int → 1 @ yield

A natural notion of sub-effecting

⊢ λx.do yield x : Int → 1 @ yield, ask

6

Effect Contexts

A typing judgement tracks the ambient effect context

⊢ λx.do yield x : Int → 1 @ yield

Effect contexts propagate through types and terms

⊢ λf.λx.f x : (Int → 1)
@ yield

→ Int → 1
@ yield

@ yield

A natural notion of sub-effecting

⊢ λx.do yield x : Int → 1 @ yield, ask

6

Effect Contexts

A typing judgement tracks the ambient effect context

⊢ λx.do yield x : Int → 1 @ yield

Effect contexts propagate through types and terms

⊢ λf.λx.f x : (Int → 1)
@ yield

→ Int → 1
@ yield

@ yield

A natural notion of sub-effecting

⊢ λx.do yield x : Int → 1 @ yield, ask

6

Absolute Modalities

Effect contexts are part of typing judgements, not types

We use modalities to track effects in types

An absolute modality [E] changes the ambient effect context to E

Γ ⊢ mod[yield] (λx.do yield x) : [yield](Int → 1) @ ask

The absolute modality [yield] changes the ambient effect context ask to yield

The lock 🔒[yield] tracks the changes of effect contexts

7

Absolute Modalities

Effect contexts are part of typing judgements, not types

We use modalities to track effects in types

An absolute modality [E] changes the ambient effect context to E

Γ ⊢ mod[yield] (λx.do yield x) : [yield](Int → 1) @ ask

The absolute modality [yield] changes the ambient effect context ask to yield

The lock 🔒[yield] tracks the changes of effect contexts

7

Absolute Modalities

Effect contexts are part of typing judgements, not types

We use modalities to track effects in types

An absolute modality [E] changes the ambient effect context to E

Γ ⊢ mod[yield] (λx.do yield x) : [yield](Int → 1) @ ask

The absolute modality [yield] changes the ambient effect context ask to yield

The lock 🔒[yield] tracks the changes of effect contexts

7

Absolute Modalities

Effect contexts are part of typing judgements, not types

We use modalities to track effects in types

An absolute modality [E] changes the ambient effect context to E

Γ,🔒[yield] ⊢ λx.do yield x : Int → 1 @ yield

Γ ⊢ mod[yield] (λx.do yield x) : [yield](Int → 1) @ ask

The absolute modality [yield] changes the ambient effect context ask to yield

The lock 🔒[yield] tracks the changes of effect contexts

7

Relative Modalities

A relative modality ⟨E⟩ extends the ambient effect context with effects E

Γ ⊢ mod⟨yield⟩ (λx.do yield (do ask ())) : ⟨yield⟩(Int → 1) @ ask

The relative modality ⟨yield⟩ extends the ambient effect context ask with yield

8

Relative Modalities

A relative modality ⟨E⟩ extends the ambient effect context with effects E

Γ ⊢ mod⟨yield⟩ (λx.do yield (do ask ())) : ⟨yield⟩(Int → 1) @ ask

The relative modality ⟨yield⟩ extends the ambient effect context ask with yield

8

Relative Modalities

A relative modality ⟨E⟩ extends the ambient effect context with effects E

Γ,🔒⟨yield⟩ ⊢ λx.do yield (do ask ()) : Int → 1 @ yield, ask

Γ ⊢ mod⟨yield⟩ (λx.do yield (do ask ())) : ⟨yield⟩(Int → 1) @ ask

The relative modality ⟨yield⟩ extends the ambient effect context ask with yield

8

Locks Control the Accessibility of Variables

An invalid judgement

f : Int → 1 ̸⊢ mod[yield] (λx.f x) : [yield](Int → 1) @ ask

because f may use the ask operation

MET rejects its expected premise

f : Int → 1,🔒[yield] ̸⊢ λx.f x : Int → 1 @ yield

by not allowing f to be used after the lock 🔒[yield]

9

Locks Control the Accessibility of Variables

An invalid judgement

f : Int → 1
@ ask

̸⊢ mod[yield] (λx.f x
@ yield

) : [yield](Int → 1) @ ask

because f may use the ask operation

MET rejects its expected premise

f : Int → 1,🔒[yield] ̸⊢ λx.f x : Int → 1 @ yield

by not allowing f to be used after the lock 🔒[yield]

9

Locks Control the Accessibility of Variables

An invalid judgement

f : Int → 1
@ ask

̸⊢ mod[yield] (λx.f x
@ yield

) : [yield](Int → 1) @ ask

because f may use the ask operation

MET rejects its expected premise

f : Int → 1,🔒[yield] ̸⊢ λx.f x : Int → 1 @ yield

by not allowing f to be used after the lock 🔒[yield]

9

Modality Elimination

We can make the premise well-typed by annotating the binding of f with [] (or [yield])

f :[] Int → 1
@ ·

,🔒[yield] ⊢ λxInt.f x : Int → 1 @ yield

Such a binding is introduced by modality elimination (the default annotation is ⟨⟩)

⊢ V : [](Int → 1) f :[] Int → 1 ⊢ M : A @ yield

⊢ let mod[] f = V in M : A @ yield

10

Modality Elimination

We can make the premise well-typed by annotating the binding of f with [] (or [yield])

f :[] Int → 1
@ ·

,🔒[yield] ⊢ λxInt.f x : Int → 1 @ yield

Such a binding is introduced by modality elimination (the default annotation is ⟨⟩)

⊢ V : [](Int → 1) f :[] Int → 1 ⊢ M : A @ yield

⊢ let mod[] f = V in M : A @ yield

10

Rows as Modal Effects

System Fϵ: Row-Based Effect Types à la Koka

System Fϵ formalises Koka’s row-based effect system

11

System Fϵ: Row-Based Effect Types à la Koka

System Fϵ formalises Koka’s row-based effect system

Key idea: annotate each function arrow with a row of effects

A →E B
A function that may use effects in the row E when applied

11

Examples of System Fϵ

A →E B

A first-order effectful function

λx.do yield x : Int →yield 1

A higher-order effect-polymorphic function

Λε.λf.λx.f x : ∀ε.(Int →ε 1) → Int →ε 1

12

Examples of System Fϵ

A →E B
A first-order effectful function

λx.do yield x : Int →yield 1

A higher-order effect-polymorphic function

Λε.λf.λx.f x : ∀ε.(Int →ε 1) → Int →ε 1

12

Examples of System Fϵ

A →E B
A first-order effectful function

λx.do yield x : Int →yield 1

A higher-order effect-polymorphic function

Λε.λf.λx.f x : ∀ε.(Int →ε 1) → Int →ε 1

12

Encoding System Fϵ in MET

JA →E BK = [JEK](JAK → JBK)

Encoding of the first-order effectful functionJInt →yield 1K = [yield](Int → 1)

Jλx.do yield xK = mod[yield] (λx.do yield x)

Encoding of the higher-order effect-polymorphic functionJ∀ε.(Int →ε 1) → Int →ε 1K = ∀ε.[]([ε](Int → 1) → [ε](Int → 1))

JΛε.λf.λx.f xK = Λε.mod[] (λf.mod[ε] (λx.let mod[ε] f′ = f in f′ x))

13

Encoding System Fϵ in MET

JA →E BK = [JEK](JAK → JBK)
Encoding of the first-order effectful functionJInt →yield 1K = [yield](Int → 1)

Jλx.do yield xK = mod[yield] (λx.do yield x)

Encoding of the higher-order effect-polymorphic functionJ∀ε.(Int →ε 1) → Int →ε 1K = ∀ε.[]([ε](Int → 1) → [ε](Int → 1))

JΛε.λf.λx.f xK = Λε.mod[] (λf.mod[ε] (λx.let mod[ε] f′ = f in f′ x))

13

Encoding System Fϵ in MET

JA →E BK = [JEK](JAK → JBK)
Encoding of the first-order effectful functionJInt →yield 1K = [yield](Int → 1)Jλx.do yield xK = mod[yield] (λx.do yield x)

Encoding of the higher-order effect-polymorphic functionJ∀ε.(Int →ε 1) → Int →ε 1K = ∀ε.[]([ε](Int → 1) → [ε](Int → 1))

JΛε.λf.λx.f xK = Λε.mod[] (λf.mod[ε] (λx.let mod[ε] f′ = f in f′ x))

13

Encoding System Fϵ in MET

JA →E BK = [JEK](JAK → JBK)
Encoding of the first-order effectful functionJInt →yield 1K = [yield](Int → 1)

Jλx.do yield xK = mod[yield] (λx.do yield x)

Encoding of the higher-order effect-polymorphic functionJ∀ε.(Int →ε 1) → Int →ε 1K = ∀ε.[]([ε](Int → 1) → [ε](Int → 1))

JΛε.λf.λx.f xK = Λε.mod[] (λf.mod[ε] (λx.let mod[ε] f′ = f in f′ x))

13

Encoding System Fϵ in MET

JA →E BK = [JEK](JAK → JBK)
Encoding of the first-order effectful functionJInt →yield 1K = [yield](Int → 1)

Jλx.do yield xK = mod[yield] (λx.do yield x)

Encoding of the higher-order effect-polymorphic functionJ∀ε.(Int →ε 1) → Int →ε 1K = ∀ε.[]([ε](Int → 1) → [ε](Int → 1))JΛε.λf.λx.f xK = Λε.mod[] (λf.mod[ε] (λx.let mod[ε] f′ = f in f′ x))

13

Capabilities as Modal Effects

System C: Capability-Based Effect Types à la Effekt

System C formalises Effekt’s capability-based effect system

14

System C: Capability-Based Effect Types à la Effekt

System C formalises Effekt’s capability-based effect system

Key idea: treat effects as capabilities provided by the context

(A, f : T) ⇒ B
A block (i.e., second-class function) that binds

• a list of arguments of types A, and
• a list of capabilities f : T (i.e., block variables)

14

Examples of System C

(A, f : T) ⇒ B

A first-order block that call the capability yield from the context

yield : Int ⇒ 1 ⊢ {(x : Int) ⇒ yield(x)} : Int ⇒ 1

A higher-order block that binds a capability f (a block variable)

{(x : Int, f : Int ⇒ 1) ⇒ f(x)} : (Int, f : Int ⇒ 1) ⇒ 1

15

Examples of System C

(A, f : T) ⇒ B
A first-order block that call the capability yield from the context

yield : Int ⇒ 1 ⊢ {(x : Int) ⇒ yield(x)} : Int ⇒ 1

A higher-order block that binds a capability f (a block variable)

{(x : Int, f : Int ⇒ 1) ⇒ f(x)} : (Int, f : Int ⇒ 1) ⇒ 1

15

Examples of System C

(A, f : T) ⇒ B
A first-order block that call the capability yield from the context

yield : Int ⇒ 1 ⊢ {(x : Int) ⇒ yield(x)} : Int ⇒ 1

A higher-order block that binds a capability f (a block variable)

{(x : Int, f : Int ⇒ 1) ⇒ f(x)} : (Int, f : Int ⇒ 1) ⇒ 1

15

Examples of System C (Contd.)

Blocks / capabilities are second-class, i.e., they cannot escape

{(x : Int, f : Int ⇒ 1) ⇒ f(x)} : (Int, f : Int ⇒ 1) ⇒ 1

In order to define a curried version we need to use boxes

{(f : Int ⇒ 1) ⇒ box {(x : Int) ⇒ f(x)} } : (f : Int ⇒ 1) ⇒ (Int ⇒ 1 at {f})

box · · · turns a block into a first-class value

The result type Int ⇒ 1 at {f} tracks that this boxed block uses the capability f

16

Examples of System C (Contd.)

Blocks / capabilities are second-class, i.e., they cannot escape

{(x : Int, f : Int ⇒ 1) ⇒ f(x)} : (Int, f : Int ⇒ 1) ⇒ 1

In order to define a curried version we need to use boxes

{(f : Int ⇒ 1) ⇒ box {(x : Int) ⇒ f(x)} } : (f : Int ⇒ 1) ⇒ (Int ⇒ 1 at {f})

box · · · turns a block into a first-class value

The result type Int ⇒ 1 at {f} tracks that this boxed block uses the capability f

16

Examples of System C (Contd.)

Blocks / capabilities are second-class, i.e., they cannot escape

{(x : Int, f : Int ⇒ 1) ⇒ f(x)} : (Int, f : Int ⇒ 1) ⇒ 1

In order to define a curried version we need to use boxes

{(f : Int ⇒ 1) ⇒ box {(x : Int) ⇒ f(x)} } : (f : Int ⇒ 1) ⇒ (Int ⇒ 1 at {f})

box · · · turns a block into a first-class value

The result type Int ⇒ 1 at {f} tracks that this boxed block uses the capability f

16

Encoding System C in MET

J(A, f : T) ⇒ BK = ∀f∗.⟨f∗⟩(JAK → [f∗]JTK → JBK)

It looks quite involved since a block construction in System C does several things

{(x : Int, f : Int ⇒ 1) ⇒ f(x)} : (Int, f : Int ⇒ 1) ⇒ 1

(1) bind a both term- and type-level capability f
(2) this f may be invoked in the block body
(3) any capability from the context may also be invoked in the block body

17

Encoding System C in MET

J(A, f : T) ⇒ BK = ∀f∗.⟨f∗⟩(JAK → [f∗]JTK → JBK)
It looks quite involved since a block construction in System C does several things

{(x : Int, f : Int ⇒ 1) ⇒ f(x)} : (Int, f : Int ⇒ 1) ⇒ 1

(1) bind a both term- and type-level capability f
(2) this f may be invoked in the block body
(3) any capability from the context may also be invoked in the block body

17

Encoding Blocks of System C

A block construction in System C does several things:

(1) bind a both term- and type-level capability f
(2) this f may be invoked in the block body
(3) any capability from the context may also be invoked in the block body

Our encoding uses modalities to make them explicit

J(Int, f : Int ⇒ 1) ⇒ 1K = ∀f∗. ⟨f∗⟩(Int → [f∗](Int → 1) → 1)

For (1), we introduce a type-level variable f∗ and wrap the argument with the modality [f∗]

For (2) and (3), we use the relative modality ⟨f∗⟩

18

Encoding Blocks of System C

A block construction in System C does several things:

(1) bind a both term- and type-level capability f
(2) this f may be invoked in the block body
(3) any capability from the context may also be invoked in the block body

Our encoding uses modalities to make them explicit

J(Int, f : Int ⇒ 1) ⇒ 1K = ∀f∗. ⟨f∗⟩(Int → [f∗](Int → 1) → 1)

For (1), we introduce a type-level variable f∗ and wrap the argument with the modality [f∗]

For (2) and (3), we use the relative modality ⟨f∗⟩

18

Encoding Boxes of System C

Boxes in System C are encoded as absolute modalities

J(f : Int ⇒ 1) ⇒ (Int ⇒ 1 at {f}) K = ∀f∗. ⟨f∗⟩([f∗](Int → 1) → [f∗](Int → 1))

19

Wrapping Up

Comparing Rows and Capabilities

By encoding both System Fϵ and System C into MET, we can easily compare them

System Fϵ to MET: JA →E BK = [JEK](JAK → JBK)J∀ε. AK = ∀ε. JAK
System C to MET: J(A, f : T) ⇒ BK = ∀f∗. ⟨f∗⟩(JAK → [f∗]JTK → JBK)JT at CK = [JCK]JTK

Two main observations:

1.
2.

20

Comparing Rows and Capabilities

By encoding both System Fϵ and System C into MET, we can easily compare them

System Fϵ to MET: JA →E BK = [JEK] (JAK → JBK)J∀ε. AK = ∀ε. JAK
System C to MET: J(A, f : T) ⇒ BK = ∀f∗. ⟨f∗⟩ (JAK → [f∗]JTK → JBK)JT at CK = [JCK] JTK

Two main observations:

1. different top-level modalities
2.

20

Comparing Rows and Capabilities

By encoding both System Fϵ and System C into MET, we can easily compare them

System Fϵ to MET: JA →E BK = [JEK] (JAK → JBK)J∀ε. AK = ∀ε. JAK
System C to MET: J(A, f : T) ⇒ BK = ∀f∗. ⟨f∗⟩ (JAK → [f∗]JTK → JBK)JT at CK = [JCK] JTK

Two main observations:

1. different top-level modalities => System Fϵ functions fully specify effects while
System C blocks may use any capabilities from the context (unless boxed)

2. 20

Comparing Rows and Capabilities

By encoding both System Fϵ and System C into MET, we can easily compare them

System Fϵ to MET: JA →E BK = [JEK](JAK → JBK)J∀ε. AK = ∀ε. JAK
System C to MET: J(A, f : T) ⇒ BK = ∀f∗. ⟨f∗⟩(JAK → [f∗]JTK → JBK)JT at CK = [JCK]JTK

Two main observations:

1. different top-level modalities
2. different uses of effect variables

20

Comparing Rows and Capabilities

By encoding both System Fϵ and System C into MET, we can easily compare them

System Fϵ to MET: JA →E BK = [JEK](JAK → JBK)J∀ε. AK = ∀ε. JAK
System C to MET: J(A, f : T) ⇒ BK = ∀f∗. ⟨f∗⟩(JAK → [f∗]JTK → JBK)JT at CK = [JCK]JTK

Two main observations:

1. different top-level modalities
2. different uses of effect variables => capabilities enable some form of implicit effect

polymorphism 20

More in the Paper

Full formalisation of the uniform framework MET(X)

• Parameterised by effect structures X following Morris and McKinna1 and Yoshioka et al.2

• Extensions including local labels and modality-parameterised handlers

• Proofs of type soundness and effect safety

Encodings of different effect systems

• Koka (System Fϵ, System Fϵ+sn) and Effekt (System C, System Ξ) with effect handlers

• Proofs of type and semantics preservation

1Morris and McKinna, “Abstracting Extensible Data Types: Or, Rows by Any Other Name”, 2019.
2Yoshioka, Sekiyama, and Igarashi, “Abstracting Effect Systems for Algebraic Effect Handlers”, 2024.

21

Takeaway

Decoupling effect tracking from functions provides the flexibility and expressivity to
subsume row-based and capability-based effect systems

Koka as MET: JA →E BK= [JEK](JAK → JBK)
Effekt as MET: J(A, f : T) ⇒ BK= ∀f∗.⟨f∗⟩(JAK → [f∗]JTK → JBK)

22

