Rows and Capabilities as Modal Effects

Wenhao Tang Sam Lindley

POPL, Rennes, France, 16th Jan 2026

Effects and Effect Types

Effects are the way programs interact with their environment

Including 1/0, concurrency, exceptions, nondeterminism, probability

Effects and Effect Types

Effects are the way programs interact with their environment
Including 1/0, concurrency, exceptions, nondeterminism, probability
Effect types (or effect systems) statically track use of effects in types

Many recent practical effect systems as based on rows (Koka) or (Effekt)

Rows and Capabilities

Row-Based Effect Types as in Koka

A EB

A function that may use effects in the
row E when applied

Rows and Capabilities

Row-Based Effect Types as in Koka Capability-Based Effect Types as in Effekt

A—EB (A,f:T)=B

A function that may use effects in the A block (second-class function) that binds
row E when applied capabilities and may use them

Rows and Capabilities

Row-Based Effect Types as in Koka Capability-Based Effect Types as in Effekt

A—EB (A,f:T)=B

A function that may use effects in the A block (second-class function) that binds
row E when applied capabilities and may use them

Question: How to compare them formally and systematically?

Rows and Capabilities

Row-Based Effect Types as in Koka Capability-Based Effect Types as in Effekt

A—EB (A,f:T)=B

A function that may use effects in the A block (second-class function) that binds
row E when applied capabilities and may use them

Question: How to compare them formally and systematically?

Challenge: Their effect tracking mechanisms are entangled with function types.

A Detour: CBV, CBN, and CBPV

Translating between CBV and CBN is rather involved

A Detour: CBV, CBN, and CBPV

Translating between CBV and CBN is rather involved

because when to suspend and force computations is entangled with functions

A Detour: CBV, CBN, and CBPV

Translating between CBV and CBN is rather involved
because when to suspend and force computations is entangled with functions

CBPV smoothly subsumes both by decoupling thunking and forcing from functions

A Detour: CBV, CBN, and CBPV

Translating between CBV and CBN is rather involved
because when to suspend and force computations is entangled with functions
CBPV smoothly subsumes both by decoupling thunking and forcing from functions

Why not decoupling effect tracking from function types?

A Uniform Framework for Effect Types

Modal Effect Types (MET) decouple effect tracking from function types via modalities

Modal Effect Types

WENHAO TANG, The University of Edinburgh, United Kingdom

LEO WHITE, Jane Street, United Kingdom

STEPHEN DOLAN, Jane Street, United Kingdom

DANIEL HILLERSTROM, The University of Edinburgh, United Kingdom
SAM LINDLEY, The University of Edinburgh, United Kingdom

ANTON LORENZEN, The University of Edinburgh, United Kingdom

A Uniform Framework for Effect Types

Modal Effect Types (MET) decouple effect tracking from function types via modalities

Modal Effect Types

WENHAO TANG, The University of Edinburgh, United Kingdom

LEO WHITE, Jane Street, United Kingdom

STEPHEN DOLAN, Jane Street, United Kingdom

DANIEL HILLERSTROM, The University of Edinburgh, United Kingdom
SAM LINDLEY, The University of Edinburgh, United Kingdom

ANTON LORENZEN, The University of Edinburgh, United Kingdom

This OOPSLA25 paper proposes MET and shows how it provides modular effectful types
in practice without using effect polymorphism

A Uniform Framework for Effect Types

Modal Effect Types (MET) decouple effect tracking from function types via modalities

Our contribution: A framework for encoding and comparing effect systems based on MET

A Uniform Framework for Effect Types

Modal Effect Types (MET) decouple effect tracking from function types via modalities

Our contribution: A framework for encoding and comparing effect systems based on MET

(oka as MeT: [A —E B] = [[E]I([A] — [B])

cirek as mer: [(A, £ T) = B =V (F)([A] — IF1T] — [B])

Modal Effect Types

Effect Contexts

A typing judgement tracks the ambient effect context

F Ax.doyieldx : Int — 1 @ yield

Effect Contexts

A typing judgement tracks the ambient effect context

F Ax.doyieldx : Int — 1 @ yield

Effect contexts propagate through types and terms

FMMSfx o (Int—>1) > Int—1 O yield

Effect Contexts

A typing judgement tracks the ambient effect context

- Mx.doyieldx : Int -1 @ yield

Effect contexts propagate through types and terms

F M MXfx o (Int > 1) —» Int—1 O yield
@ yield @ yield

Effect Contexts

A typing judgement tracks the ambient effect context

- Mx.doyieldx : Int -1 @ yield

Effect contexts propagate through types and terms

F M MXfx o (Int > 1) —» Int—1 O yield
@ yield @ yield

A natural notion of sub-effecting

F Ax.doyieldx : Int —1 @ yield,ask

Absolute Modalities

Effect contexts are part of typing judgements, not types

We use modalities to track effects in types

Absolute Modalities

Effect contexts are part of typing judgements, not types
We use modalities to track effects in types

An absolute modality [F] changes the ambient effect context to E

M+ mOd[yield] ()\X.do yield X) : [yield](Int — 1) © ask

Absolute Modalities

Effect contexts are part of typing judgements, not types
We use modalities to track effects in types

An absolute modality [F] changes the ambient effect context to E

M+ mOd[yield] ()\X.do yield X) : [yield](Int — 1) © ask

The absolute modality [yield] changes the ambient effect context ask to yield

Absolute Modalities

Effect contexts are part of typing judgements, not types
We use modalities to track effects in types

An absolute modality [F] changes the ambient effect context to E

l‘,ﬁ[yield] F Ax.doyieldx : Int -1 @ yield

M+ mOd[yield] ()\X.do yield X) : [yield](Int — 1) © ask

The absolute modality [yield] changes the ambient effect context ask to yield

The lock ﬂ[yield] tracks the changes of effect contexts

Relative Modalities

A relative modality (F) extends the ambient effect context with effects E

[= modyiec1qy (Ax.doyield (doask())) : (yield)(Int — 1) @ ask

Relative Modalities

A relative modality (F) extends the ambient effect context with effects E

[= modyiec1qy (Ax.doyield (doask())) : (yield)(Int — 1) @ ask

The relative modality (yield) extends the ambient effect context ask with yield

Relative Modalities

A relative modality (F) extends the ambient effect context with effects E

F,ﬂ<yield> - Ax.doyield (do ask ()) : Int -1 @ yield, ask
[= modyiec1qy (Ax.doyield (doask())) : (yield)(Int — 1) @ ask

The relative modality (yield) extends the ambient effect context ask with yield

Locks Control the Accessibility of Variables

An invalid judgement

f:Int =1 I/ modyieiq (AXfX) @ [yield](Int — 1) @ ask
[yield]

Locks Control the Accessibility of Variables

An invalid judgement

fﬂ Int — 1 V mOd[yield]()\X.fX) : [yield](Int s 1) © ask
@ ask © yield

because f may use the ask operation

Locks Control the Accessibility of Variables

An invalid judgement

fﬂ Int — 1 V mOd[yield]()\X.fX) : [yield](Int s 1) © ask
@ ask © yield

because f may use the ask operation

MET rejects its expected premise
f:Int — 1va[yield] Mfx : Int -1 Q@ yield

by not allowing f to be used after the lock ﬂ[yield]

Modality Elimination

We can make the premise well-typed by annotating the binding of f with [] (or [yield])

f[] Int@—'> 1-/“[yield] F AXInth : Int -1 @ yield

10

Modality Elimination

We can make the premise well-typed by annotating the binding of f with [] (or [yield])

f[] Int@—'> 1-/“[yield] F AXInth : Int -1 @ yield

Such a binding is introduced by modality elimination (the default annotation is ())

= Vo [[(Int — 1) fipInt—=1F M : A @ yield
- letmod;f=VinM : A @ yield

10

Rows as Modal Effects

System F°: Row-Based Effect Types a la Koka

System F¢ formalises Koka's row-based effect system

Effect Handlers, Evidently

NINGNING XIE, Microsoft Research, USA

JONATHAN IMMANUEL BRAC HTHAUSER, University of Tiibingen, Germany
DANIEL HILLERSTROM, The University of Edinburgh, United Kingdom

PHILIPP SCHUSTER, University of Tiibingen, Germany

DAAN LEIJEN, Microsoft Research, USA

"

System F°: Row-Based Effect Types a la Koka

System F¢ formalises Koka's row-based effect system

Key idea: annotate each function arrow with a row of effects

A —EB

A function that may use effects in the row E when applied

"

Examples of System F°

A —EB

12

Examples of System F°

E
A —="B
A first-order effectful function

Ax.do yield x : Int —vield g

12

Examples of System F°

E
A —="B
A first-order effectful function

Ax.do yield x : Int —vield g

A higher-order effect-polymorphic function

Ne M fx @ Ve (Int —»° 1) —» Int »°1

12

Encoding System F in MET

[A —* B] = [[EIN(TA] — [B])

Encoding System F in MET

[A —* B] = [[EIN(TA] — [B])

Encoding of the first-order effectful function

[Int —»Yield] = [yield](Int — 1)

13

Encoding System F in MET

[A —* B] = [[EIN(TA] — [B])

Encoding of the first-order effectful function

[Int —Yield 4] = [yield](Int — 1)
[M.doyieldXx] = modp;e1q) (Ax.doyield X)

13

Encoding System F in MET

[A —* B] = [[EIN(TA] — [B])

Encoding of the first-order effectful function

[Int —Yield 4] = [yield](Int — 1)

Encoding of the higher-order effect-polymorphic function

[Ve.(Int —»° 1) —» Int - 1] = Ve.[]([e](Int — 1) — [¢](Int — 1))

13

Encoding System F in MET

[A —* B] = [[EIN(TA] — [B])

Encoding of the first-order effectful function

[Int —Yield 4] = [yield](Int — 1)

Encoding of the higher-order effect-polymorphic function

[Ve.(Int —»° 1) —» Int - 1] = Ve.[]([e](Int — 1) — [¢](Int — 1))
[Ne AMfAxfx] = Ae.modp (M.mody (A\x.let mody f =finf x))

13

Capabilities as Modal Effects

System C: Capability-Based Effect Types a la Effekt

System C formalises Effekt’s capability-based effect system

Effects, Capabilities, and Boxes

From Scope-Based Reasoning to Type-Based Reasoning and Back

JONATHAN IMMANUEL BRACHTHAUSER, University of Titbingen, Germany
PHILIPP SCHUSTER, University of Tiibingen, Germany

EDWARD LEE, University of Waterloo, Canada

ALEKSANDER BORUCH-GRUSZECKI, EPFL, Switzerland

System C: Capability-Based Effect Types a la Effekt

System C formalises Effekt’s capability-based effect system

Key idea: treat effects as capabilities provided by the context

(A f:T)=B
A block (i.e., second-class function) that binds

e a list of arguments of types A, and

e a list of capabilities (i.e., block variables)

Examples of System C

15

Examples of System C

(A,) = B

A first-order block that call the capability from the context

cInt =1 F {(x:Int)=yield(X)} : Int=1

15

Examples of System C

(A,) = B

A first-order block that call the capability from the context

cInt =1 F {(x:Int)=yield(X)} : Int=1

A higher-order block that binds a capability f (a block variable)

{(x:Int,f:Int = 1) = f(x)} : (Int,) =1

15

Examples of System C (Contd.)

Blocks / capabilities are second-class, i.e., they cannot escape

{(x:Int,f:Int=1)=f(x)} : (Int,) =1

Examples of System C (Contd.)

Blocks / capabilities are second-class, i.e., they cannot escape

{(x:Int,f:Int=1)=f(x)} : (Int,) =1

In order to define a curried version we need to use boxes

{f:Int=1)= {x:Int)=f(X)}} : (f:Int=1)= (Int=1)

Examples of System C (Contd.)

Blocks / capabilities are second-class, i.e., they cannot escape
{(x:Int,f:Int=1)=f(x)} : (Int,) =1
In order to define a curried version we need to use boxes

{f:Int=1)= {x:Int)=f(X)}} : (f:Int=1)= (Int=1)

.- turns a block into a first-class value

The result type Int = 1 tracks that this boxed block uses the capability f

Encoding System C in MET

[(A.f: T) = B] = Vf.(F)(TA] = IFILT] — [B])

Encoding System C in MET

[(A.f:T) = B] = Vf-(F)([A] — If1[T] — [B])

It looks quite involved since a block construction in System C does several things
{(x:Int,f:Int=1)=f(x)} : (Int,)=1
(1) bind a both term- and type-level capability

(2) this f may be invoked in the block body
(3) any capability from the context may also be invoked in the block body

Encoding Blocks of System C

A block construction in System C does several things:

(1) bind a both term- and type-level capability
(2) this f may be invoked in the block body

(3) any capability from the context may also be invoked in the block body

Encoding Blocks of System C

A block construction in System C does several things:

(1) bind a both term- and type-level capability
(2) this f may be invoked in the block body

(3) any capability from the context may also be invoked in the block body

Our encoding uses modalities to make them explicit
[(Int,)= 1] = V.) (Int = [[*](Int —» 1) — 1)

For (1), we introduce a type-level variable f* and wrap the argument with the modality [f*]

For (2) and (3), we use the relative modality (f*)

Encoding Boxes of System C

Boxes in System C are encoded as absolute modalities

[(f:Int = 1) = (Int =1)] = VP ()P (Int — 1) = [F](@nt = 1))

Wrapping Up

Comparing Rows and Capabilities

By encoding both System F¢ and System C into MET, we can easily compare them
System F€ to MET: [A ol B] = [[E]]([A] — [B])
[Ve. A] = Ve. [A]

System Cto Me: (A,)= B] = f’k fk [[A]] — U*]HT]] — [B])
[T at €] = [[CIIT]

Two main observations:

20

Comparing Rows and Capabilities

By encoding both System F¢ and System C into MET, we can easily compare them
System F€ to MET: [A ol B] = [[E]] ([A] — [B])
[Ve. A] = Ve. [A]

system Ctomer: [(A,f: T) = B] = Vf*. (F)([A] — IF1[7] — [B])
[T = [lc]1 (7]
Two main observations:

1. different top-level modalities
2.

20

Comparing Rows and Capabilities

By encoding both System F¢ and System C into MET, we can easily compare them
System F€ to MET: [A ol B] = [[E]] ([A] — [B])
[Ve. A] = Ve. [A]

system Ctomer: [(A,f: T) = B] = Vf*. (F)([A] — IF1[7] — [B])
[Tatc] = [[C]][T]
Two main observations:

1. different top-level modalities => System F€ functions fully specify effects while
System C blocks may use any capabilities from the context (unless boxed)

2. 20

Comparing Rows and Capabilities

By encoding both System F¢ and System C into MET, we can easily compare them
System F€ to MET: [A ol B] = [[E]]([A] — [B])
[Ve. A] = Ve. [A]

system Cto Mer: [(A,f: T) = Bl = Yf. (F)([TA] — [F1IT] — [B])
[TatC] = [[C]][T]
Two main observations:

1. different top-level modalities
2. different uses of effect variables

20

Comparing Rows and Capabilities

By encoding both System F¢ and System C into MET, we can easily compare them
System F€ to MET: [A ol B] = [[E]]([A] — [B])
[Ve. A] = Ve. [A]

system Ctomer: [(A,f: T) = Bl = YF. (F)Y([TA] — IF1IT] — [B])
[TatC] = [[C]][T]
Two main observations:

1. different top-level modalities
2. different uses of effect variables => capabilities enable some form of implicit effect
polymorphism 20

More in the Paper

Full formalisation of the uniform framework MeT(X’)

e Parameterised by effect structures X following Morris and McKinna' and Yoshioka et al.?
e Extensions including local labels and modality-parameterised handlers

e Proofs of type soundness and effect safety
Encodings of different effect systems

e Koka (System F¢, System Ft*") and Effekt (System C, System =) with effect handlers

® Proofs of type and semantics preservation

"Morris and McKinna, “Abstracting Extensible Data Types: Or, Rows by Any Other Name”, 2019.
2yoshioka, Sekiyama, and Igarashi, “Abstracting Effect Systems for Algebraic Effect Handlers”, 2024.

21

Decoupling effect tracking from functions provides the flexibility and expressivity to
subsume row-based and capability-based effect systems

Koka as MET: [[A —>E B]] = [[[Eﬂ]([[A]] — [[B]])

cirektas mer: [(A,F 2 T) = B] =V~ (F)(TA] — IFIIT] — [B])

22

