
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Session-Typed Effect Handlers (Extended Abstract)
WENHAO TANG, The University of Edinburgh, United Kingdom

We explore how to design a novel effect system for algebraic effects and handlers inspired by session types,
especially the notions of channels and protocols.

1 INTRODUCTION
Effect handlers [Plotkin and Pretnar 2013] and session types [Honda 1993] are two hot topics in
programming language research nowadays. Algebraic effects [Plotkin and Power 2003] and effect
handlers offer an expressive and modular way to implement computational effects. To enable safe
and scalable usage of effect handlers, the type system is usually extended with an effect system
to track the effects used by programs. Session types provide static guarantees that concurrent
programs respect communication protocols. Intuitively, the interaction between effects and handlers
can also be described as communication protocols. Can we design effect systems for effect handlers
using the idea of session types?

As background, in the past ten years, many approaches to effect systems for effect handlers have
been proposed. The mainstream ones are row-based effect systems as implemented in Links [Hiller-
ström and Lindley 2016] and Koka [Leijen 2017], which track effects as row types and achieve
compositionality via row polymorphism. Eff infers more precise effect types via effect subtyp-
ing [Bauer and Pretnar 2013; Karachalias et al. 2020; Pretnar 2014] at the cost of explicit constraints
in types. Frank [Lindley et al. 2017] simplifies row-based effect systems using the idea of contextual
effects. Effekt [Brachthäuser et al. 2022, 2020] further develops contextual effect polymorphism,
totally getting rid of row variables. Moreover, some effect systems also support named handlers
(also called lexically-scoped handlers) [Biernacki et al. 2020; Brachthäuser et al. 2022; de Vilhena
and Pottier 2023; Xie et al. 2022; Zhang and Myers 2019], which associate effects with their handlers
to solve the effect encapsulation problem and ease program reasoning. However, there is still no
ultimate effect system for algebraic effects and handlers.
We explore the possibilities of session-typed effect handlers, a novel design discipline towards

effect systems. Specifically, we propose a core calculus _Qeff with a novel effect system inspired by
session types, especially the notions of channels and protocols. In _Qeff , all effects are invoked on
channels and all handlers are installed on channels. _Qeff tracks channels as second-class values
to avoid escaping. Different channels do not interfere with each other; effects in one channel
must and can only be handled in the dual channel. Channels provide a generalised version of
named handlers [Biernacki et al. 2020; Xie et al. 2022]. Channels carry protocols which are similar
to session types and specify how effects and handlers interact with each other. Different from
conventional effect systems for effect handlers [Hillerström et al. 2016; Leijen 2017], protocols in
_Qeff not only track which effects are used, but also track which handlers are installed. Furthermore,
the rich structure of protocols allow us to easily track more involved control flows like bidirectional
effects [Zhang et al. 2020] in a more precise manner.
To be clear, there has been work on extending session-typed 𝜋-calculus with effects and one-

shot handlers [Qian 2022], comparing the expressiveness of some specific forms of session types
and effect types [Orchard and Yoshida 2016], encoding effects and one-shot handlers with corou-
tines [Kawahara and Kameyama 2020; Phipps-Costin et al. 2023], and encoding session-typed
communication with effect handlers [Kammar et al. 2013; Lindley et al. 2017]. This work is about

This is an extended abstract for the student research competition of POPL 2024.

HTTPS://ORCID.ORG/0009-0000-6589-3821

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Wenhao Tang

something quite different, namely exploring new effect systems for effect handlers instead of encod-
ing some restricted forms of them via concurrent processes or vice versa. This has a non-negligible
influence on our design choice; for example, it is important for _Qeff to support standard features
shared by other calculi with algebraic effects and handlers like multi-shot handlers.

The main advantages of the effect system of _Qeff are:
• Channels generalise handler names in the sense that different handlers can share one
channel, while different named handlers must have their own names.
• Channels easily support shallow handlers, while previous systems named handlers do not.
• Protocols can track which handlers are installed and in which order they are installed.
• Protocols can track involved control flows like bidirectional effects flexibly.

Section 2 gives an overview of _Qeff with several examples showing how channels and protocols
work in practice. Section 3 shows the syntax, kinding rules, subtyping rules, typing rules, and
operational semantics for _Qeff . Section 4 lists future work.

2 OVERVIEW
This section shows examples of _Qeff including unidirectional effects and bidirectional effects.

2.1 Unidirectional Effects
_Qeff gives us generalised named handlers which can share names and specify the order of handlers.

Channels give names to handlers. Channels give us named handlers. Consider two operations
Choose : () ↠ Bool and Print : String ↠ (). We obtain a named handler for Choose by creating
a single channel with it. We use the syntactic sugar resume 𝑟 𝑀 ≡ (force 𝑟) (thunk 𝑀) and
resume 𝑟 𝑉 ≡ (force 𝑟) (thunk (return𝑉)).

fork⊕{Choose}𝑐 (if (do𝑐 Choose) then 20 else 22)
(handle𝑐 e

𝑐 with {Choose 𝑟 ↦→ resume 𝑟 true + resume 𝑟 false})

The fork primitive is used to connect computations and handlers. We name the two computations
taken by fork as𝑀 and 𝑁 . The fork⊕{Choose}𝑐 𝑀 𝑁 binds the channel 𝑐 : ⊕{Choose} in𝑀 , and its
dual channel 𝑐 : N{Choose} in 𝑁 . The protocol type ⊕{Choose} allows unlimited invocation of
operationChoose, and its dualN{Choose} requires deep handling ofChoose. Operation invocation
do𝑐 and handlinghandle𝑐 take channels and respect their protocols. The hole e

𝑐 is a special variable
bound in 𝑁 which will be filled with thunk 𝑀 during evaluation. This program evaluates to 42.

Channels can be shared by different handlers. One advantage of channels over named handlers is
that different handlers can share the same channel. For example, we can create a channel with two
operations and handle them separately.

fork⊕{Choose ;Print}𝑐 (if (do𝑐 Choose) then do𝑐 Print "42" else do𝑐 Print "24")
(handle𝑐 (handle𝑐 e

𝑐 with {Choose 𝑟 ↦→ resume 𝑟 true})
with {Print 𝑠 𝑟 ↦→ write(𝑠); resume 𝑟 ()})

Different channels do not interfere with each other. Viewing effectful programs as computation
trees, one way to understand channels is that they extract subtrees from them. The handlers in
dual channels are restricted to deal with these subtrees instead of the whole computation tree.

Protocols specify the structure of handling. Another benefit provided by protocol types is that we
can distinguish between different orders of handlers. For example, we can specify whether we want
the local-state semantics or global-state semantics [Pauwels et al. 2019] in types. When using the

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Session-Typed Effect Handlers (Extended Abstract) 3

syntax . to connect two N{. . .}, the handler of the former appear inside the handler of the latter.
We use the syntactic sugar𝑀 ▷𝑐 𝐻 ≡ handle𝑐 𝑀 with 𝐻 .

fork⊕{Choose ; Fail} .⊕{Get ;Put}𝑐 (. . .)
(e𝑐 ▷𝑐 {return . . .Choose . . . Fail . . . }) ▷𝑐 {Get . . . Put . . . }

fork⊕{Get ;Put} .⊕{Choose ; Fail}𝑐 (. . .)
(e𝑐 ▷𝑐 {Get . . . Put . . . }) ▷𝑐 {return . . .Choose . . . Fail . . . }

2.2 Bidirectional Effects
_Qeff also supports bidirectional effects. It gives us a more fine-grained way to specify bidirectional
interaction between effects and handlers in a similar style to session types.

Protocols specify bidirectional effects. Bidirectional effects enable bidirectional control flow which
allows us to transfer control from handlers back to the initial effects. The protocol types of _Qeff
naturally tracks bidirectional control flow. For example, consider two operations Ask : () ↠ String
which asks for a string and Raise : ∀𝛼.String↠ 𝛼 which raises an exception. (Extending _Qeff with
value polymorphism is standard.) The channel 𝑐 : ⊕{Ask : N{Raise}} allows programs to invoke the
Ask operation as long as they guarantee to handle exceptions. Its dual channel 𝑐 : N{Ask : ⊕{Raise}}
requires programs to handle Ask, but also allows them to resume with exceptions which are handled
in the original channel. We can write a server that might crash and a client that deals with the
exception as follows.

fork⊕{Ask:N{Raise}}𝑐 (handle𝑐 (do𝑐 Ask; return ()) {Raise 𝑠 𝑟 ↦→ write("error:" ++ 𝑠)})
(handle𝑐 e

𝑐 {Ask 𝑟 ↦→ resume 𝑟 (do𝑐 Raise "server crashes")})

Protocols can specify deeper bidirectional behaviours. Compared with the effect system for bidirec-
tional effects in Zhang et al. [2020], _Qeff can express deeper bidirectional behaviours naturally. For
example, the channel

𝑐 : ⊕{Ask : N{Response : ⊕{Ask : N{Response,Raise}}}}
indicates that the client only needs to deal with server crashing in the second round of asking. 1

Recursive protocols. Recursive types are needed to encode endless bidirectional communication.
For instance, the ping-pong example in Zhang et al. [2020] is specified by `𝛼.⊕{Ping : N{Pong : 𝛼}}.
We do not have recursive types in _Qeff currently, but it should be standard to extend _Qeff with
recursive types.

3 THE CORE CALCULUS
The explicit core calculus _Qeff is based on call-by-push-value [Levy 2004] extended with constructs
for algebraic effects and handlers [Kammar et al. 2013]. We assume readers’ familiarity with
call-by-push-value and effect handlers.

3.1 Syntax and Kinding
The syntax of _Qeff is formally shown in Figure 1. Everything relevant to channels is highlighted.
Thunk thunk 𝑀 captures the used channels Δ in its type ↓Δ𝐶 . We have channel abstraction _𝑐𝑆 . 𝑀
(which is given type ∀𝑐𝑆 .𝐶) and application𝑀 𝑐 . Protocol types 𝑆 have a very similar structure to
session types and describe protocols specifying the effectful behaviours of computations. We have
empty (or end) protocol type ♦, protocol sequencing 𝑆.𝑆 representing nested handlers, selection
1Another example can be found in https://thwfhk.github.io/files/session-handlers-popl24-src-poster.pdf

https://thwfhk.github.io/files/session-handlers-popl24-src-poster.pdf

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Wenhao Tang

Value types 𝐴, 𝐵 ::= ↓Δ𝐶
Computation types 𝐶, 𝐷 ::= ↑𝐴 | 𝐴→ 𝐶 | ∀𝑐𝑆 . 𝐶
Protocol types 𝑆 ::= ⊕{−−−−−−−−→ℓ ⊲𝐴 ↠ 𝐵 : 𝑆} | N{−−−−−−−−→ℓ ⊲𝐴 ↠ 𝐵 : 𝑆} | 𝑆.𝑆 | ♦𝑌 | 𝑆
Types 𝑇 ::= 𝐴 | 𝐶 | 𝐸 | 𝐹 | 𝑆
Kinds 𝐾 ::= Type | Comp | Handler | Session𝑌
Polarity 𝑌 ::= ⊕ | N
Handler types 𝐹 ::= 𝐶 ⇒ 𝐷

Type contexts Γ ::= · | Γ, 𝑥 : 𝐴
Channel contexts Δ ::= · | Δ, 𝑐 : 𝑆
Channels 𝑐 ::= 𝑐 | 𝑐
Values 𝑉 ,𝑊 ::= 𝑥 | thunk 𝑀
Computations 𝑀, 𝑁 ::= force 𝑉 | _𝑥𝐴 . 𝑀 | 𝑀 𝑉 | let 𝑥 ← 𝑀 in 𝑁

| return 𝑉 | do𝑐 ℓ 𝑉 | handle𝑐 𝑀 with 𝐻
| fork𝑆𝑐 𝑀 𝑁 | _𝑐𝑆 . 𝑀 | 𝑀 𝑐

Handlers 𝐻 ::= {return 𝑥 ↦→ 𝑀} | {ℓ 𝑝 𝑟 ↦→ 𝑀} ⊎ 𝐻

Fig. 1. Syntax of _Qeff .

⊕{−−−−−−−−→ℓ ⊲𝐴 ↠ 𝐵 : 𝑆} representing effects invocation, and its dual choiceN{−−−−−−−−→ℓ ⊲𝐴 ↠ 𝐵 : 𝑆} representing
effects handling. The ℓ ⊲𝐴 ↠ 𝐵 : 𝑆 means the label ℓ has signature𝐴 ↠ 𝐵 and continues as protocol
type 𝑆 . We sometimes omit operation signatures and empty protocol types. For unidirectional
effects, we only need single-level selection and choice of forms ⊕{−→ℓ } and N{−→ℓ }. We interpret
them as unlimited invocation and deep handling of operations in −→

ℓ , respectively. In other words,
⊕{−→ℓ } means that operations −→ℓ might be invoked, and N{−→ℓ } means that handlers for −→ℓ are
installed. The dual operation 𝑆 basically swaps selection and choice. It is defined for well-kinded
protocol types as follows.

♦⊕ = ♦N
♦N = ♦⊕

𝑆1 .𝑆2 = 𝑆1 .𝑆2

⊕{ℓ𝑖 ⊲𝐴𝑖 ↠ 𝐵𝑖 : 𝑆𝑖 }𝑖 = N{ℓ𝑖 ⊲𝐴𝑖 ↠ 𝐵𝑖 : 𝑆𝑖 }𝑖
N{ℓ𝑖 ⊲𝐴𝑖 ↠ 𝐵𝑖 : 𝑆𝑖 }𝑖 = ⊕{ℓ𝑖 ⊲𝐴𝑖 ↠ 𝐵𝑖 : 𝑆𝑖 }𝑖

It is obvious from definition that 𝑆 = 𝑆 . For brevity, we always consider 𝑐 and 𝑐 to be identical.
All protocol types 𝑆 are required to satisfy the kinding judgement ⊢ 𝑆 : Session𝑌 which is

formally defined in Figure 2.

3.2 Typing
The subtyping relations of protocol types is defined in Figure 3. We write ⊢ 𝑆1 ≡ 𝑆2 for ⊢ 𝑆1 ⩽ 𝑆2
and ⊢ 𝑆2 ⩽ 𝑆1. For brevity, we omit operation signatures and assume that the same operations
always have the same signatures. Following the subtyping relation of session types [Gay and Hole
2005], ⊕ is contravariant and N is covariant. Additionally, we have two subtyping rules for the
sequencing of ⊕ and N, and two equivalence rules showing the transitivity of alternated ⊕ and N.
The typing rules of _Qeff are shown in Figure 4. The most non-trivial typing rules are T-Fork,

T-Handle and T-Handler. The T-Fork rule binds 𝑐 : 𝑆 in𝑀 , and its dual 𝑐 : 𝑆 and a special variable

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Session-Typed Effect Handlers (Extended Abstract) 5

⊢ 𝑆 : Session𝑌

K-Select
[⊢ 𝑆𝑖 : SessionN ⊢ 𝐴𝑖 : Type ⊢ 𝐵𝑖 : Type]𝑖 unique(−→ℓ𝑖)

⊢ ⊕{ℓ𝑖 ⊲𝐴𝑖 ↠ 𝐵𝑖 : 𝑆𝑖 }𝑖 : Session⊕

K-Choice
[⊢ 𝑆𝑖 : Session⊕ ⊢ 𝐴𝑖 : Type ⊢ 𝐵𝑖 : Type]𝑖 unique(−→ℓ𝑖)

⊢ N{ℓ𝑖 ⊲𝐴𝑖 ↠ 𝐵𝑖 : 𝑆𝑖 }𝑖 : SessionN

K-Seq
⊢ 𝑆1 : Session𝑌1 ⊢ 𝑆2 : Session𝑌2

⊢ 𝑆1 .𝑆2 : Session𝑌1
K-Empty

⊢ ♦𝑌 : Session𝑌

Fig. 2. Kinding rules for the protocol types of _Qeff .

⊢ 𝐸1 ⩽ 𝐸2 ⊢ 𝐸1 ≡ 𝐸2

⊢ N{−−−→ℓ𝑖 : 𝐸𝑖 ;
−−−→
ℓ𝑗 : 𝐸′𝑗 } ⩽ N{−−−→ℓ𝑖 : 𝐸𝑖 }.N{

−−−→
ℓ𝑗 : 𝐸′𝑗 } ⊢ ⊕{−−−→ℓ𝑖 : 𝐸𝑖 ;

−−−→
ℓ𝑗 : 𝐸′𝑗 } ⩽ ⊕{

−−−→
ℓ𝑖 : 𝐸𝑖 }. ⊕ {

−−−→
ℓ𝑗 : 𝐸′𝑗 }

⊢ ⊕{−−−→ℓ𝑖 : 𝐸𝑖 }.N{
−−−→
ℓ𝑗 : 𝐸′𝑗 } ≡ ⊕{

−−−−−−−−−−−→
ℓ𝑖 : 𝐸𝑖 .N{

−−−→
ℓ𝑗 : 𝐸′𝑗 }} ⊢ N{−−−→ℓ𝑖 : 𝐸𝑖 }. ⊕ {

−−−→
ℓ𝑗 : 𝐸′𝑗 } ≡ N{

−−−−−−−−−−−→
ℓ𝑖 : 𝐸𝑖 . ⊕ {

−−−→
ℓ𝑗 : 𝐸′𝑗 }}

♦⊕ ≡ ⊕{} ♦N ≡ N{}

Fig. 3. Subtyping rules for the protocol types of _Qeff .

e
𝑐 in 𝑁 . The thunk variable e

𝑐 has protocol type ♦N on 𝑐 which intuitively means no handler has
been installed yet. Thus, in order to use it in 𝑁 , we need to install all handlers required by 𝑆 out of
it, which is important for effect safety. The T-Handle rule removes labels−→ℓ𝑖 from the protocol type
𝑆 of channel 𝑐 using a special operator split(𝑆,−→ℓ𝑖). These labels

−→
ℓ𝑖 are removed from the protocol

type of 𝑀 since the handler 𝐻 is installed out of 𝑀 . The T-Handler rule uses 𝑆𝑖 as the protocol
type of channel 𝑐 for the parameter of the continuation of each label ℓ𝑖 . Notice that the continuation
𝑟𝑖 still captures 𝑐 : 𝑆 , because deep handlers are recursively installed on the continuations.

TheT-Handle andT-Handler rules both use ameta function split(𝑆,−→ℓ𝑖) to remove the operation
labels−→ℓ𝑖 appropriately from 𝐸. For split(𝑆,−→ℓ𝑖) = (𝑆𝑟 ,

−−−→
ℓ𝑖 : 𝑆𝑖), it finds theN{−−−→ℓ𝑖 : 𝑆𝑖 , · · ·} in all branches

of the first-two levels of 𝑆 that contain all−→ℓ𝑖 , extracts the sets
−−−→
ℓ𝑖 : 𝑆𝑖 , checks that all sets are identical,

returns the set
−−−→
ℓ𝑖 : 𝑆𝑖 as the second component and returns the remaining session type as the first

component. It is formally defined in Figure 5.

3.3 Semantics
The semantics of _Qeff is shown in Figure 6. It follows from the generative semantics of named
handlers [Biernacki et al. 2020].

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Wenhao Tang

Γ ⊢ 𝑉 : 𝐴 Δ | Γ ⊢ 𝑀 : 𝐶 Δ | Γ ⊢𝑐 𝐻 : 𝐶 ⇒ 𝐷

T-Var

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

T-Thunk
Δ | Γ ⊢ 𝑀 : 𝐶

Γ ⊢ thunk 𝑀 : ↓Δ𝐶

T-Force
Γ ⊢ 𝑉 : ↓Δ′𝐶 Δ′ ⊆ Δ

Δ | Γ ⊢ force 𝑉 : 𝐶

T-Abs
Δ | Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐶

Δ | Γ ⊢ _𝑥𝐴 . 𝑀 : 𝐴→ 𝐶

T-App
Δ | Γ ⊢ 𝑀 : 𝐴→ 𝐶 Γ ⊢ 𝑉 : 𝐴

Δ | Γ ⊢ 𝑀 𝑉 : 𝐶

T-CAbs
Δ, 𝑐 : 𝑆 ; Γ ⊢ 𝑀 : 𝐶

Δ | Γ ⊢ n𝑐𝑆 . 𝑀 : ∀𝑐 : 𝑆.𝐶

T-CApp
Δ, 𝑑 : 𝑆 ; Γ ⊢ 𝑀 : ∀𝑐 : 𝑆.𝐶
Δ, 𝑑 : 𝑆 ; Γ ⊢ 𝑀 𝑑 : 𝐶 [𝑑/𝑐]

T-CSub
Δ, 𝑐 : 𝑆 ′ | Γ ⊢ 𝑀 : 𝐶 𝑆 ⩽ 𝑆 ′

Δ, 𝑐 : 𝑆 | Γ ⊢ 𝑀 : 𝐶

T-Return
Γ ⊢ 𝑉 : 𝐴

Δ | Γ ⊢ return 𝑉 : ↑𝐴

T-Do
(𝑐 : ⊕{ℓ ⊲𝐴 ↠ 𝐵, . . .}) ∈ Δ Γ ⊢ 𝑉 : 𝐴

Δ | Γ ⊢ do𝑐 ℓ 𝑉 : ↑𝐵

T-Seq
Δ | Γ ⊢ 𝑀 : ↑𝐴 Δ | Γ, 𝑥 : 𝐴 ⊢ 𝑁 : 𝐶

Δ | Γ ⊢ let 𝑥 ← 𝑀 in 𝑁 : 𝐶

T-Fork
Δ, 𝑐 : 𝑆 ; Γ ⊢ 𝑀 : ↑𝐴 Δ, 𝑐 : 𝑆 | Γ, e𝑐 :↓Δ, 𝑐 :♦N (↑𝐴) ⊢ 𝑁 : 𝐶 𝑐, 𝑐 ∉ 𝐴,𝐶

Δ | Γ ⊢ fork𝐸𝑐 𝑀 𝑁 : 𝐶

T-Handle
dom(𝐻) = −→

ℓ𝑖 (𝑆𝑟 , _) = split(𝑆,−→ℓ𝑖)
Δ, 𝑐 : 𝑆𝑟 ; Γ ⊢ 𝑀 : ↑𝐴 Δ, 𝑐 : 𝑆 ; Γ ⊢𝑐 𝐻 : ↑𝐴⇒↑𝐵

Δ, 𝑐 : 𝑆 ; Γ ⊢ handle𝑐 𝑀 with 𝐻 : 𝐷

T-Handler
𝐻 = {return 𝑥 ↦→ 𝑀} ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 Δ, 𝑐 : 𝑆 ; Γ, 𝑥 : 𝐴 ⊢ 𝑀 :↑𝐵

(_, {ℓ𝑖 ⊲𝐴𝑖 ↠ 𝐵𝑖 : 𝑆𝑖 }𝑖) = split(𝑆,−→ℓ𝑖)
[Δ, 𝑐 : 𝑆 ; Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 :↓Δ, 𝑐 :𝑆 (↓Δ, 𝑐 :𝑆𝑖 (↑𝐵𝑖) →↑𝐵) ⊢ 𝑁𝑖 :↑𝐵]𝑖

Δ, 𝑐 : 𝑆 ; Γ ⊢𝑐 𝐻 : ↑𝐴⇒↑𝐵

Fig. 4. Typing rules for _Qeff .

split(N{−−−→ℓ𝑖 : 𝑆𝑖 ,
−−−→
ℓ𝑗 : 𝑆 ′𝑗 },

−→
ℓ𝑖) = (N{−−−→ℓ𝑗 : 𝑆 ′𝑗 },

−−−→
ℓ𝑖 : 𝑆𝑖)

split(⊕{−−−→ℓ𝑗 : 𝑆 𝑗 },
−→
ℓ𝑖) = (⊕{−−−→ℓ𝑗 : 𝑆 ′𝑗 },

−−−→
ℓ𝑖 : 𝑆𝑖)

where (𝑆 ′𝑗 ,
−−−→
ℓ𝑖 : 𝑆𝑖) = split(𝑆 𝑗 ,

−→
ℓ𝑖)

split(_, _) = fail, otherwise

Fig. 5. Definition of split.

4 FUTUREWORK
Future work includes:

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Session-Typed Effect Handlers (Extended Abstract) 7

E-App (_𝑥 .𝑀)𝑉 { 𝑀 [𝑉 /𝑥]
E-CApp (n𝑐.𝑀) 𝑙 { 𝑀 [𝑙/𝑐]
E-Force force (thunk 𝑀) { 𝑀

E-Seq let 𝑥 ← return 𝑉 in 𝑁 { 𝑁 [𝑉 /𝑥]
E-Ret handle𝑙 (return 𝑉) with 𝐻 { 𝑁 [𝑉 /𝑥] where (return 𝑥 ↦→ 𝑁) ∈ 𝐻
E-Op handle𝑙 E[do𝑙 ℓ 𝑉] with 𝐻 { 𝑁 [𝑉 /𝑝, (_𝑦.handle𝑙 E[force 𝑦] with 𝐻)/𝑟]

where ℓ ∉ bl(E, 𝑙) and (ℓ 𝑝 𝑟 ↦→ 𝑁) ∈ 𝐻
E-Fork fork𝑐 𝑀 𝑁 { (𝑁 [𝑀/ e𝑐]) [𝑙/𝑐, 𝑙/𝑐] where 𝑙 is fresh
E-Lift E[𝑀] { E[𝑁], if𝑀 { 𝑁

Channel instances 𝑙 . . .

Evaluation contexts E ::= [] | let 𝑥 ← E in 𝑁 | handle𝑙 E with 𝐻
bl([], 𝑙) = ∅ bl(let 𝑥 ← E in 𝑁, 𝑙) = bl(E)

bl(handle𝑙 E with 𝐻, 𝑙) = bl(E) ∪ dom(𝐻) bl(handle𝑙 ′ E with 𝐻, 𝑙) = bl(E)

Fig. 6. Small-Step Operational Semantics of _Qeff

• The current _Qeff is specially developed from the conventional point of view of algebraic
effects and deep handlers. Channels are unlimited and effects can be arbitrarily invoked
and handled. However, session types naturally track more fine-grained information. For
instance, ⊕{ℓ1 : ⊕{ℓ2}} can be interpreted as sequential usage of ℓ1 and ℓ2 exactly once.
We are exploring how to develop another version of _Qeff with linear channels and shallow
handlers which could precisely encode session-typed communication on both type and
term level.
• It would be interesting to extend _Qeff with concurrent semantics. Since effects and handlers

are intrinsically non-concurrent, it would be interesting to explore the notion of non-blocking
effects and their relation to asynchronous effects [Ahman and Pretnar 2021].
• Consider polymorphism and recursive types.
• It would be interesting to explore the usage of multiparty session types [Honda et al. 2008].
• In addition to bidirectional effects, we plan to extend _Qeff with more variants of algebraic ef-

fects and handlers such as n-ary handlers [Lindley et al. 2017] and higher-order effects [Piróg
et al. 2018; Poulsen and van der Rest 2023; van den Berg and Schrijvers 2023; van den Berg
et al. 2021].

REFERENCES
Danel Ahman and Matija Pretnar. 2021. Asynchronous effects. Proc. ACM Program. Lang. 5, POPL (2021), 1–28. https:

//doi.org/10.1145/3434305
Andrej Bauer and Matija Pretnar. 2013. An Effect System for Algebraic Effects and Handlers. In Algebra and Coalgebra in

Computer Science, Reiko Heckel and Stefan Milius (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–16.
Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2020. Binders by day, labels by night: effect instances

via lexically scoped handlers. Proc. ACM Program. Lang. 4, POPL (2020), 48:1–48:29. https://doi.org/10.1145/3371116
Jonathan Immanuel Brachthäuser, Philipp Schuster, Edward Lee, and Aleksander Boruch-Gruszecki. 2022. Effects, capabilities,

and boxes: from scope-based reasoning to type-based reasoning and back. Proc. ACM Program. Lang. 6, OOPSLA1 (2022),
1–30. https://doi.org/10.1145/3527320

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as capabilities: effect handlers and
lightweight effect polymorphism. Proc. ACM Program. Lang. 4, OOPSLA (2020), 126:1–126:30. https://doi.org/10.1145/
3428194

Paulo Emílio de Vilhena and François Pottier. 2023. A Type System for Effect Handlers and Dynamic Labels. In Programming
Languages and Systems - 32nd European Symposium on Programming, ESOP 2023, Held as Part of the European Joint

https://doi.org/10.1145/3434305
https://doi.org/10.1145/3434305
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3527320
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Wenhao Tang

Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings (Lecture Notes in
Computer Science, Vol. 13990), Thomas Wies (Ed.). Springer, 225–252. https://doi.org/10.1007/978-3-031-30044-8_9

Simon J. Gay and Malcolm Hole. 2005. Subtyping for session types in the pi calculus. Acta Informatica 42, 2-3 (2005),
191–225. https://doi.org/10.1007/S00236-005-0177-Z

Daniel Hillerström and Sam Lindley. 2016. Liberating Effects with Rows and Handlers (TyDe 2016). Association for Computing
Machinery, New York, NY, USA, 15–27. https://doi.org/10.1145/2976022.2976033

Daniel Hillerström, Sam Lindley, and KC Sivaramakrishnan. 2016. Compiling Links Effect Handlers to the OCaml Backend.
ML Workshop.

Kohei Honda. 1993. Types for Dyadic Interaction. In CONCUR ’93, 4th International Conference on Concurrency Theory,
Hildesheim, Germany, August 23-26, 1993, Proceedings (Lecture Notes in Computer Science, Vol. 715), Eike Best (Ed.). Springer,
509–523. https://doi.org/10.1007/3-540-57208-2_35

Kohei Honda, Nobuko Yoshida, and Marco Carbone. 2008. Multiparty asynchronous session types. In Proceedings of the 35th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2008, San Francisco, California, USA,
January 7-12, 2008, George C. Necula and Philip Wadler (Eds.). ACM, 273–284. https://doi.org/10.1145/1328438.1328472

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In ACM SIGPLAN International Conference on
Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, Greg Morrisett and Tarmo Uustalu (Eds.).
ACM, 145–158. https://doi.org/10.1145/2500365.2500590

Georgios Karachalias, Matija Pretnar, Amr Hany Saleh, Stien Vanderhallen, and Tom Schrijvers. 2020. Explicit effect
subtyping. J. Funct. Program. 30 (2020), e15. https://doi.org/10.1017/S0956796820000131

Satoru Kawahara and Yukiyoshi Kameyama. 2020. One-Shot Algebraic Effects as Coroutines. In Trends in Functional
Programming - 21st International Symposium, TFP 2020, Krakow, Poland, February 13-14, 2020, Revised Selected Papers
(Lecture Notes in Computer Science, Vol. 12222), Aleksander Byrski and John Hughes (Eds.). Springer, 159–179. https:
//doi.org/10.1007/978-3-030-57761-2_8

Daan Leijen. 2017. Type Directed Compilation of Row-Typed Algebraic Effects. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (Paris, France) (POPL ’17). Association for Computing Machinery,
New York, NY, USA, 486–499. https://doi.org/10.1145/3009837.3009872

Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis. Semantics Structures in Computation, Vol. 2.
Springer.

Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do Be Do. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (Paris, France) (POPL 2017). Association for Computing Machinery,
New York, NY, USA, 500–514. https://doi.org/10.1145/3009837.3009897

Dominic A. Orchard and Nobuko Yoshida. 2016. Effects as sessions, sessions as effects. In Proceedings of the 43rd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 568–581. https://doi.org/10.1145/2837614.2837634

Koen Pauwels, Tom Schrijvers, and Shin-Cheng Mu. 2019. Handling Local State with Global State. InMathematics of Program
Construction - 13th International Conference, MPC 2019, Porto, Portugal, October 7-9, 2019, Proceedings (Lecture Notes in
Computer Science, Vol. 11825), Graham Hutton (Ed.). Springer, 18–44. https://doi.org/10.1007/978-3-030-33636-3_2

Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerström, KC Sivaramakrishnan, Matija Pretnar,
and Sam Lindley. 2023. Continuing WebAssembly with Effect Handlers. Proc. ACM Program. Lang. 7, OOPSLA2 (2023),
460–485. https://doi.org/10.1145/3622814

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelioff. 2018. Syntax and Semantics for Operations with Scopes. In
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (Oxford, United Kingdom) (LICS ’18).
Association for Computing Machinery, New York, NY, USA, 809–818. https://doi.org/10.1145/3209108.3209166

Gordon D. Plotkin and John Power. 2003. Algebraic Operations and Generic Effects. Appl. Categorical Struct. 11, 1 (2003),
69–94. https://doi.org/10.1023/A:1023064908962

Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Log. Methods Comput. Sci. 9, 4 (2013).
Casper Bach Poulsen and Cas van der Rest. 2023. Hefty Algebras: Modular Elaboration of Higher-Order Algebraic Effects.

Proc. ACM Program. Lang. 7, POPL (2023), 1801–1831. https://doi.org/10.1145/3571255
Matija Pretnar. 2014. Inferring Algebraic Effects. Log. Methods Comput. Sci. 10, 3 (2014). https://doi.org/10.2168/LMCS-10(3:

21)2014
Zesen Qian. 2022. Concurrency And Races In Classical Linear Logic. Ph. D. Dissertation. Aarhus University.
Birthe van den Berg and Tom Schrijvers. 2023. A Framework for Higher-Order Effects & Handlers. CoRR abs/2302.01415

(2023). https://doi.org/10.48550/arXiv.2302.01415 arXiv:2302.01415
Birthe van den Berg, Tom Schrijvers, Casper Bach Poulsen, and Nicolas Wu. 2021. Latent Effects for Reusable Language

Components. In Programming Languages and Systems - 19th Asian Symposium, APLAS 2021, Chicago, IL, USA, October
17-18, 2021, Proceedings (Lecture Notes in Computer Science, Vol. 13008), Hakjoo Oh (Ed.). Springer, 182–201. https:
//doi.org/10.1007/978-3-030-89051-3_11

https://doi.org/10.1007/978-3-031-30044-8_9
https://doi.org/10.1007/S00236-005-0177-Z
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1017/S0956796820000131
https://doi.org/10.1007/978-3-030-57761-2_8
https://doi.org/10.1007/978-3-030-57761-2_8
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3009837.3009897
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1007/978-3-030-33636-3_2
https://doi.org/10.1145/3622814
https://doi.org/10.1145/3209108.3209166
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1145/3571255
https://doi.org/10.2168/LMCS-10(3:21)2014
https://doi.org/10.2168/LMCS-10(3:21)2014
https://doi.org/10.48550/arXiv.2302.01415
https://arxiv.org/abs/2302.01415
https://doi.org/10.1007/978-3-030-89051-3_11
https://doi.org/10.1007/978-3-030-89051-3_11

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Session-Typed Effect Handlers (Extended Abstract) 9

Ningning Xie, Youyou Cong, Kazuki Ikemori, and Daan Leijen. 2022. First-class names for effect handlers. Proc. ACM
Program. Lang. 6, OOPSLA2 (2022), 30–59. https://doi.org/10.1145/3563289

Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-safe effect handlers via tunneling. Proc. ACM Program. Lang. 3,
POPL (2019), 5:1–5:29. https://doi.org/10.1145/3290318

Yizhou Zhang, Guido Salvaneschi, and Andrew C. Myers. 2020. Handling bidirectional control flow. Proc. ACM Program.
Lang. 4, OOPSLA (2020), 139:1–139:30. https://doi.org/10.1145/3428207

https://doi.org/10.1145/3563289
https://doi.org/10.1145/3290318
https://doi.org/10.1145/3428207

	Abstract
	1 Introduction
	2 Overview
	2.1 Unidirectional Effects
	2.2 Bidirectional Effects

	3 The Core Calculus
	3.1 Syntax and Kinding
	3.2 Typing
	3.3 Semantics

	4 Future Work
	References

