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Session-Typed Effect Handlers (Extended Abstract)
WENHAO TANG, The University of Edinburgh, United Kingdom

We explore how to design a novel effect system for algebraic effects and handlers inspired by session types,
especially the notions of channels and protocols.

1 INTRODUCTION
Effect handlers [Plotkin and Pretnar 2013] and session types [Honda 1993] are two hot topics in
programming language research nowadays. Algebraic effects [Plotkin and Power 2003] and effect
handlers offer an expressive and modular way to implement computational effects. To enable safe
and scalable usage of effect handlers, the type system is usually extended with an effect system
to track the effects used by programs. Session types provide static guarantees that concurrent
programs respect communication protocols. Intuitively, the interaction between effects and handlers
can also be described as communication protocols. Can we design effect systems for effect handlers
using the idea of session types?

As background, in the past ten years, many approaches to effect systems for effect handlers have
been proposed. The mainstream ones are row-based effect systems as implemented in Links [Hiller-
ström and Lindley 2016] and Koka [Leijen 2017], which track effects as row types and achieve
compositionality via row polymorphism. Eff infers more precise effect types via effect subtyp-
ing [Bauer and Pretnar 2013; Karachalias et al. 2020; Pretnar 2014] at the cost of explicit constraints
in types. Frank [Lindley et al. 2017] simplifies row-based effect systems using the idea of contextual
effects. Effekt [Brachthäuser et al. 2022, 2020] further develops contextual effect polymorphism,
totally getting rid of row variables. Moreover, some effect systems also support named handlers
(also called lexically-scoped handlers) [Biernacki et al. 2020; Brachthäuser et al. 2022; de Vilhena
and Pottier 2023; Xie et al. 2022; Zhang and Myers 2019], which associate effects with their handlers
to solve the effect encapsulation problem and ease program reasoning. However, there is still no
ultimate effect system for algebraic effects and handlers.
We explore the possibilities of session-typed effect handlers, a novel design discipline towards

effect systems. Specifically, we propose a core calculus 𝜆Qeff with a novel effect system inspired by
session types, especially the notions of channels and protocols. In 𝜆Qeff , all effects are invoked on
channels and all handlers are installed on channels. 𝜆Qeff tracks channels as second-class values
to avoid escaping. Different channels do not interfere with each other; effects in one channel
must and can only be handled in the dual channel. Channels provide a generalised version of
named handlers [Biernacki et al. 2020; Xie et al. 2022]. Channels carry protocols which are similar
to session types and specify how effects and handlers interact with each other. Different from
conventional effect systems for effect handlers [Hillerström et al. 2016; Leijen 2017], protocols in
𝜆Qeff not only track which effects are used, but also track which handlers are installed. Furthermore,
the rich structure of protocols allow us to easily track more involved control flows like bidirectional
effects [Zhang et al. 2020] in a more precise manner.
To be clear, there has been work on extending session-typed 𝜋-calculus with effects and one-

shot handlers [Qian 2022], comparing the expressiveness of some specific forms of session types
and effect types [Orchard and Yoshida 2016], encoding effects and one-shot handlers with corou-
tines [Kawahara and Kameyama 2020; Phipps-Costin et al. 2023], and encoding session-typed
communication with effect handlers [Kammar et al. 2013; Lindley et al. 2017]. This work is about
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2 Wenhao Tang

something quite different, namely exploring new effect systems for effect handlers instead of encod-
ing some restricted forms of them via concurrent processes or vice versa. This has a non-negligible
influence on our design choice; for example, it is important for 𝜆Qeff to support standard features
shared by other calculi with algebraic effects and handlers like multi-shot handlers.

The main advantages of the effect system of 𝜆Qeff are:
• Channels generalise handler names in the sense that different handlers can share one
channel, while different named handlers must have their own names.
• Channels easily support shallow handlers, while previous systems named handlers do not.
• Protocols can track which handlers are installed and in which order they are installed.
• Protocols can track involved control flows like bidirectional effects flexibly.

Section 2 gives an overview of 𝜆Qeff with several examples showing how channels and protocols
work in practice. Section 3 shows the syntax, kinding rules, subtyping rules, typing rules, and
operational semantics for 𝜆Qeff . Section 4 lists future work.

2 OVERVIEW
This section shows examples of 𝜆Qeff including unidirectional effects and bidirectional effects.

2.1 Unidirectional Effects
𝜆Qeff gives us generalised named handlers which can share names and specify the order of handlers.

Channels give names to handlers. Channels give us named handlers. Consider two operations
Choose : () ↠ Bool and Print : String ↠ (). We obtain a named handler for Choose by creating
a single channel with it. We use the syntactic sugar resume 𝑟 𝑀 ≡ (force 𝑟 ) (thunk 𝑀) and
resume 𝑟 𝑉 ≡ (force 𝑟 ) (thunk (return𝑉 )).

fork⊕{Choose}𝑐 (if (do𝑐 Choose) then 20 else 22)
(handle𝑐 e

𝑐 with {Choose 𝑟 ↦→ resume 𝑟 true + resume 𝑟 false})

The fork primitive is used to connect computations and handlers. We name the two computations
taken by fork as𝑀 and 𝑁 . The fork⊕{Choose}𝑐 𝑀 𝑁 binds the channel 𝑐 : ⊕{Choose} in𝑀 , and its
dual channel 𝑐 : N{Choose} in 𝑁 . The protocol type ⊕{Choose} allows unlimited invocation of
operationChoose, and its dualN{Choose} requires deep handling ofChoose. Operation invocation
do𝑐 and handlinghandle𝑐 take channels and respect their protocols. The hole e

𝑐 is a special variable
bound in 𝑁 which will be filled with thunk 𝑀 during evaluation. This program evaluates to 42.

Channels can be shared by different handlers. One advantage of channels over named handlers is
that different handlers can share the same channel. For example, we can create a channel with two
operations and handle them separately.

fork⊕{Choose ;Print}𝑐 (if (do𝑐 Choose) then do𝑐 Print "42" else do𝑐 Print "24")
(handle𝑐 (handle𝑐 e

𝑐 with {Choose 𝑟 ↦→ resume 𝑟 true})
with {Print 𝑠 𝑟 ↦→ write(𝑠); resume 𝑟 ()})

Different channels do not interfere with each other. Viewing effectful programs as computation
trees, one way to understand channels is that they extract subtrees from them. The handlers in
dual channels are restricted to deal with these subtrees instead of the whole computation tree.

Protocols specify the structure of handling. Another benefit provided by protocol types is that we
can distinguish between different orders of handlers. For example, we can specify whether we want
the local-state semantics or global-state semantics [Pauwels et al. 2019] in types. When using the
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Session-Typed Effect Handlers (Extended Abstract) 3

syntax . to connect two N{. . .}, the handler of the former appear inside the handler of the latter.
We use the syntactic sugar𝑀 ▷𝑐 𝐻 ≡ handle𝑐 𝑀 with 𝐻 .

fork⊕{Choose ; Fail} .⊕{Get ;Put}𝑐 (. . . )
( e𝑐 ▷𝑐 {return . . .Choose . . . Fail . . . }) ▷𝑐 {Get . . . Put . . . }

fork⊕{Get ;Put} .⊕{Choose ; Fail}𝑐 (. . . )
( e𝑐 ▷𝑐 {Get . . . Put . . . }) ▷𝑐 {return . . .Choose . . . Fail . . . }

2.2 Bidirectional Effects
𝜆Qeff also supports bidirectional effects. It gives us a more fine-grained way to specify bidirectional
interaction between effects and handlers in a similar style to session types.

Protocols specify bidirectional effects. Bidirectional effects enable bidirectional control flow which
allows us to transfer control from handlers back to the initial effects. The protocol types of 𝜆Qeff
naturally tracks bidirectional control flow. For example, consider two operations Ask : () ↠ String
which asks for a string and Raise : ∀𝛼.String↠ 𝛼 which raises an exception. (Extending 𝜆Qeff with
value polymorphism is standard.) The channel 𝑐 : ⊕{Ask : N{Raise}} allows programs to invoke the
Ask operation as long as they guarantee to handle exceptions. Its dual channel 𝑐 : N{Ask : ⊕{Raise}}
requires programs to handle Ask, but also allows them to resume with exceptions which are handled
in the original channel. We can write a server that might crash and a client that deals with the
exception as follows.

fork⊕{Ask:N{Raise}}𝑐 (handle𝑐 (do𝑐 Ask; return ()) {Raise 𝑠 𝑟 ↦→ write("error:" ++ 𝑠)})
(handle𝑐 e

𝑐 {Ask 𝑟 ↦→ resume 𝑟 (do𝑐 Raise "server crashes")})

Protocols can specify deeper bidirectional behaviours. Compared with the effect system for bidirec-
tional effects in Zhang et al. [2020], 𝜆Qeff can express deeper bidirectional behaviours naturally. For
example, the channel

𝑐 : ⊕{Ask : N{Response : ⊕{Ask : N{Response,Raise}}}}
indicates that the client only needs to deal with server crashing in the second round of asking. 1

Recursive protocols. Recursive types are needed to encode endless bidirectional communication.
For instance, the ping-pong example in Zhang et al. [2020] is specified by 𝜇𝛼.⊕{Ping : N{Pong : 𝛼}}.
We do not have recursive types in 𝜆Qeff currently, but it should be standard to extend 𝜆Qeff with
recursive types.

3 THE CORE CALCULUS
The explicit core calculus 𝜆Qeff is based on call-by-push-value [Levy 2004] extended with constructs
for algebraic effects and handlers [Kammar et al. 2013]. We assume readers’ familiarity with
call-by-push-value and effect handlers.

3.1 Syntax and Kinding
The syntax of 𝜆Qeff is formally shown in Figure 1. Everything relevant to channels is highlighted.
Thunk thunk 𝑀 captures the used channels Δ in its type ↓Δ𝐶 . We have channel abstraction 𝜆𝑐𝑆 . 𝑀
(which is given type ∀𝑐𝑆 .𝐶) and application𝑀 𝑐 . Protocol types 𝑆 have a very similar structure to
session types and describe protocols specifying the effectful behaviours of computations. We have
empty (or end) protocol type ♦, protocol sequencing 𝑆.𝑆 representing nested handlers, selection
1Another example can be found in https://thwfhk.github.io/files/session-handlers-popl24-src-poster.pdf

https://thwfhk.github.io/files/session-handlers-popl24-src-poster.pdf


148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Wenhao Tang

Value types 𝐴, 𝐵 ::= ↓Δ𝐶
Computation types 𝐶, 𝐷 ::= ↑𝐴 | 𝐴→ 𝐶 | ∀𝑐𝑆 . 𝐶
Protocol types 𝑆 ::= ⊕{−−−−−−−−→ℓ ⊲𝐴 ↠ 𝐵 : 𝑆} | N{−−−−−−−−→ℓ ⊲𝐴 ↠ 𝐵 : 𝑆} | 𝑆.𝑆 | ♦𝑌 | 𝑆
Types 𝑇 ::= 𝐴 | 𝐶 | 𝐸 | 𝐹 | 𝑆
Kinds 𝐾 ::= Type | Comp | Handler | Session𝑌
Polarity 𝑌 ::= ⊕ | N
Handler types 𝐹 ::= 𝐶 ⇒ 𝐷

Type contexts Γ ::= · | Γ, 𝑥 : 𝐴
Channel contexts Δ ::= · | Δ, 𝑐 : 𝑆
Channels 𝑐 ::= 𝑐 | 𝑐
Values 𝑉 ,𝑊 ::= 𝑥 | thunk 𝑀
Computations 𝑀, 𝑁 ::= force 𝑉 | 𝜆𝑥𝐴 . 𝑀 | 𝑀 𝑉 | let 𝑥 ← 𝑀 in 𝑁

| return 𝑉 | do𝑐 ℓ 𝑉 | handle𝑐 𝑀 with 𝐻
| fork𝑆𝑐 𝑀 𝑁 | 𝜆𝑐𝑆 . 𝑀 | 𝑀 𝑐

Handlers 𝐻 ::= {return 𝑥 ↦→ 𝑀} | {ℓ 𝑝 𝑟 ↦→ 𝑀} ⊎ 𝐻

Fig. 1. Syntax of 𝜆Qeff .

⊕{−−−−−−−−→ℓ ⊲𝐴 ↠ 𝐵 : 𝑆} representing effects invocation, and its dual choiceN{−−−−−−−−→ℓ ⊲𝐴 ↠ 𝐵 : 𝑆} representing
effects handling. The ℓ ⊲𝐴 ↠ 𝐵 : 𝑆 means the label ℓ has signature𝐴 ↠ 𝐵 and continues as protocol
type 𝑆 . We sometimes omit operation signatures and empty protocol types. For unidirectional
effects, we only need single-level selection and choice of forms ⊕{−→ℓ } and N{−→ℓ }. We interpret
them as unlimited invocation and deep handling of operations in −→

ℓ , respectively. In other words,
⊕{−→ℓ } means that operations −→ℓ might be invoked, and N{−→ℓ } means that handlers for −→ℓ are
installed. The dual operation 𝑆 basically swaps selection and choice. It is defined for well-kinded
protocol types as follows.

♦⊕ = ♦N
♦N = ♦⊕

𝑆1 .𝑆2 = 𝑆1 .𝑆2

⊕{ℓ𝑖 ⊲𝐴𝑖 ↠ 𝐵𝑖 : 𝑆𝑖 }𝑖 = N{ℓ𝑖 ⊲𝐴𝑖 ↠ 𝐵𝑖 : 𝑆𝑖 }𝑖
N{ℓ𝑖 ⊲𝐴𝑖 ↠ 𝐵𝑖 : 𝑆𝑖 }𝑖 = ⊕{ℓ𝑖 ⊲𝐴𝑖 ↠ 𝐵𝑖 : 𝑆𝑖 }𝑖

It is obvious from definition that 𝑆 = 𝑆 . For brevity, we always consider 𝑐 and 𝑐 to be identical.
All protocol types 𝑆 are required to satisfy the kinding judgement ⊢ 𝑆 : Session𝑌 which is

formally defined in Figure 2.

3.2 Typing
The subtyping relations of protocol types is defined in Figure 3. We write ⊢ 𝑆1 ≡ 𝑆2 for ⊢ 𝑆1 ⩽ 𝑆2
and ⊢ 𝑆2 ⩽ 𝑆1. For brevity, we omit operation signatures and assume that the same operations
always have the same signatures. Following the subtyping relation of session types [Gay and Hole
2005], ⊕ is contravariant and N is covariant. Additionally, we have two subtyping rules for the
sequencing of ⊕ and N, and two equivalence rules showing the transitivity of alternated ⊕ and N.
The typing rules of 𝜆Qeff are shown in Figure 4. The most non-trivial typing rules are T-Fork,

T-Handle and T-Handler. The T-Fork rule binds 𝑐 : 𝑆 in𝑀 , and its dual 𝑐 : 𝑆 and a special variable
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Session-Typed Effect Handlers (Extended Abstract) 5

⊢ 𝑆 : Session𝑌

K-Select
[⊢ 𝑆𝑖 : SessionN ⊢ 𝐴𝑖 : Type ⊢ 𝐵𝑖 : Type]𝑖 unique(−→ℓ𝑖 )

⊢ ⊕{ℓ𝑖 ⊲𝐴𝑖 ↠ 𝐵𝑖 : 𝑆𝑖 }𝑖 : Session⊕

K-Choice
[⊢ 𝑆𝑖 : Session⊕ ⊢ 𝐴𝑖 : Type ⊢ 𝐵𝑖 : Type]𝑖 unique(−→ℓ𝑖 )

⊢ N{ℓ𝑖 ⊲𝐴𝑖 ↠ 𝐵𝑖 : 𝑆𝑖 }𝑖 : SessionN

K-Seq
⊢ 𝑆1 : Session𝑌1 ⊢ 𝑆2 : Session𝑌2

⊢ 𝑆1 .𝑆2 : Session𝑌1
K-Empty

⊢ ♦𝑌 : Session𝑌

Fig. 2. Kinding rules for the protocol types of 𝜆Qeff .

⊢ 𝐸1 ⩽ 𝐸2 ⊢ 𝐸1 ≡ 𝐸2

⊢ N{−−−→ℓ𝑖 : 𝐸𝑖 ;
−−−→
ℓ𝑗 : 𝐸′𝑗 } ⩽ N{−−−→ℓ𝑖 : 𝐸𝑖 }.N{

−−−→
ℓ𝑗 : 𝐸′𝑗 } ⊢ ⊕{−−−→ℓ𝑖 : 𝐸𝑖 ;

−−−→
ℓ𝑗 : 𝐸′𝑗 } ⩽ ⊕{

−−−→
ℓ𝑖 : 𝐸𝑖 }. ⊕ {

−−−→
ℓ𝑗 : 𝐸′𝑗 }

⊢ ⊕{−−−→ℓ𝑖 : 𝐸𝑖 }.N{
−−−→
ℓ𝑗 : 𝐸′𝑗 } ≡ ⊕{

−−−−−−−−−−−→
ℓ𝑖 : 𝐸𝑖 .N{

−−−→
ℓ𝑗 : 𝐸′𝑗 }} ⊢ N{−−−→ℓ𝑖 : 𝐸𝑖 }. ⊕ {

−−−→
ℓ𝑗 : 𝐸′𝑗 } ≡ N{

−−−−−−−−−−−→
ℓ𝑖 : 𝐸𝑖 . ⊕ {

−−−→
ℓ𝑗 : 𝐸′𝑗 }}

♦⊕ ≡ ⊕{} ♦N ≡ N{}

Fig. 3. Subtyping rules for the protocol types of 𝜆Qeff .

e
𝑐 in 𝑁 . The thunk variable e

𝑐 has protocol type ♦N on 𝑐 which intuitively means no handler has
been installed yet. Thus, in order to use it in 𝑁 , we need to install all handlers required by 𝑆 out of
it, which is important for effect safety. The T-Handle rule removes labels−→ℓ𝑖 from the protocol type
𝑆 of channel 𝑐 using a special operator split(𝑆,−→ℓ𝑖 ). These labels

−→
ℓ𝑖 are removed from the protocol

type of 𝑀 since the handler 𝐻 is installed out of 𝑀 . The T-Handler rule uses 𝑆𝑖 as the protocol
type of channel 𝑐 for the parameter of the continuation of each label ℓ𝑖 . Notice that the continuation
𝑟𝑖 still captures 𝑐 : 𝑆 , because deep handlers are recursively installed on the continuations.

The T-Handle and T-Handler rules both use ameta function split(𝑆,−→ℓ𝑖 ) to remove the operation
labels−→ℓ𝑖 appropriately from 𝐸. For split(𝑆,−→ℓ𝑖 ) = (𝑆𝑟 ,

−−−→
ℓ𝑖 : 𝑆𝑖 ), it finds theN{−−−→ℓ𝑖 : 𝑆𝑖 , · · ·} in all branches

of the first-two levels of 𝑆 that contain all−→ℓ𝑖 , extracts the sets
−−−→
ℓ𝑖 : 𝑆𝑖 , checks that all sets are identical,

returns the set
−−−→
ℓ𝑖 : 𝑆𝑖 as the second component and returns the remaining session type as the first

component. It is formally defined in Figure 5.

3.3 Semantics
The semantics of 𝜆Qeff is shown in Figure 6. It follows from the generative semantics of named
handlers [Biernacki et al. 2020].
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6 Wenhao Tang

Γ ⊢ 𝑉 : 𝐴 Δ | Γ ⊢ 𝑀 : 𝐶 Δ | Γ ⊢𝑐 𝐻 : 𝐶 ⇒ 𝐷

T-Var

Γ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴

T-Thunk
Δ | Γ ⊢ 𝑀 : 𝐶

Γ ⊢ thunk 𝑀 : ↓Δ𝐶

T-Force
Γ ⊢ 𝑉 : ↓Δ′𝐶 Δ′ ⊆ Δ

Δ | Γ ⊢ force 𝑉 : 𝐶

T-Abs
Δ | Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐶

Δ | Γ ⊢ 𝜆𝑥𝐴 . 𝑀 : 𝐴→ 𝐶

T-App
Δ | Γ ⊢ 𝑀 : 𝐴→ 𝐶 Γ ⊢ 𝑉 : 𝐴

Δ | Γ ⊢ 𝑀 𝑉 : 𝐶

T-CAbs
Δ, 𝑐 : 𝑆 ; Γ ⊢ 𝑀 : 𝐶

Δ | Γ ⊢ n𝑐𝑆 . 𝑀 : ∀𝑐 : 𝑆.𝐶

T-CApp
Δ, 𝑑 : 𝑆 ; Γ ⊢ 𝑀 : ∀𝑐 : 𝑆.𝐶
Δ, 𝑑 : 𝑆 ; Γ ⊢ 𝑀 𝑑 : 𝐶 [𝑑/𝑐]

T-CSub
Δ, 𝑐 : 𝑆 ′ | Γ ⊢ 𝑀 : 𝐶 𝑆 ⩽ 𝑆 ′

Δ, 𝑐 : 𝑆 | Γ ⊢ 𝑀 : 𝐶

T-Return
Γ ⊢ 𝑉 : 𝐴

Δ | Γ ⊢ return 𝑉 : ↑𝐴

T-Do
(𝑐 : ⊕{ℓ ⊲𝐴 ↠ 𝐵, . . .}) ∈ Δ Γ ⊢ 𝑉 : 𝐴

Δ | Γ ⊢ do𝑐 ℓ 𝑉 : ↑𝐵

T-Seq
Δ | Γ ⊢ 𝑀 : ↑𝐴 Δ | Γ, 𝑥 : 𝐴 ⊢ 𝑁 : 𝐶

Δ | Γ ⊢ let 𝑥 ← 𝑀 in 𝑁 : 𝐶

T-Fork
Δ, 𝑐 : 𝑆 ; Γ ⊢ 𝑀 : ↑𝐴 Δ, 𝑐 : 𝑆 | Γ, e𝑐 :↓Δ, 𝑐 :♦N (↑𝐴) ⊢ 𝑁 : 𝐶 𝑐, 𝑐 ∉ 𝐴,𝐶

Δ | Γ ⊢ fork𝐸𝑐 𝑀 𝑁 : 𝐶

T-Handle
dom(𝐻 ) = −→

ℓ𝑖 (𝑆𝑟 , _) = split(𝑆,−→ℓ𝑖 )
Δ, 𝑐 : 𝑆𝑟 ; Γ ⊢ 𝑀 : ↑𝐴 Δ, 𝑐 : 𝑆 ; Γ ⊢𝑐 𝐻 : ↑𝐴⇒↑𝐵

Δ, 𝑐 : 𝑆 ; Γ ⊢ handle𝑐 𝑀 with 𝐻 : 𝐷

T-Handler
𝐻 = {return 𝑥 ↦→ 𝑀} ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 Δ, 𝑐 : 𝑆 ; Γ, 𝑥 : 𝐴 ⊢ 𝑀 :↑𝐵

(_, {ℓ𝑖 ⊲𝐴𝑖 ↠ 𝐵𝑖 : 𝑆𝑖 }𝑖 ) = split(𝑆,−→ℓ𝑖 )
[Δ, 𝑐 : 𝑆 ; Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 :↓Δ, 𝑐 :𝑆 (↓Δ, 𝑐 :𝑆𝑖 (↑𝐵𝑖 ) →↑𝐵) ⊢ 𝑁𝑖 :↑𝐵]𝑖

Δ, 𝑐 : 𝑆 ; Γ ⊢𝑐 𝐻 : ↑𝐴⇒↑𝐵

Fig. 4. Typing rules for 𝜆Qeff .

split(N{−−−→ℓ𝑖 : 𝑆𝑖 ,
−−−→
ℓ𝑗 : 𝑆 ′𝑗 },

−→
ℓ𝑖 ) = (N{−−−→ℓ𝑗 : 𝑆 ′𝑗 },

−−−→
ℓ𝑖 : 𝑆𝑖 )

split(⊕{−−−→ℓ𝑗 : 𝑆 𝑗 },
−→
ℓ𝑖 ) = (⊕{−−−→ℓ𝑗 : 𝑆 ′𝑗 },

−−−→
ℓ𝑖 : 𝑆𝑖 )

where (𝑆 ′𝑗 ,
−−−→
ℓ𝑖 : 𝑆𝑖 ) = split(𝑆 𝑗 ,

−→
ℓ𝑖 )

split(_, _) = fail, otherwise

Fig. 5. Definition of split.

4 FUTUREWORK
Future work includes:
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E-App (𝜆𝑥 .𝑀)𝑉 { 𝑀 [𝑉 /𝑥]
E-CApp (n𝑐.𝑀) 𝑙 { 𝑀 [𝑙/𝑐]
E-Force force (thunk 𝑀) { 𝑀

E-Seq let 𝑥 ← return 𝑉 in 𝑁 { 𝑁 [𝑉 /𝑥]
E-Ret handle𝑙 (return 𝑉 ) with 𝐻 { 𝑁 [𝑉 /𝑥] where (return 𝑥 ↦→ 𝑁 ) ∈ 𝐻
E-Op handle𝑙 E[do𝑙 ℓ 𝑉 ] with 𝐻 { 𝑁 [𝑉 /𝑝, (𝜆𝑦.handle𝑙 E[force 𝑦] with 𝐻 )/𝑟 ]

where ℓ ∉ bl(E, 𝑙) and (ℓ 𝑝 𝑟 ↦→ 𝑁 ) ∈ 𝐻
E-Fork fork𝑐 𝑀 𝑁 { (𝑁 [𝑀/ e𝑐 ]) [𝑙/𝑐, 𝑙/𝑐] where 𝑙 is fresh
E-Lift E[𝑀] { E[𝑁 ], if𝑀 { 𝑁

Channel instances 𝑙 . . .

Evaluation contexts E ::= [ ] | let 𝑥 ← E in 𝑁 | handle𝑙 E with 𝐻
bl( [ ], 𝑙) = ∅ bl(let 𝑥 ← E in 𝑁, 𝑙) = bl(E)

bl(handle𝑙 E with 𝐻, 𝑙) = bl(E) ∪ dom(𝐻 ) bl(handle𝑙 ′ E with 𝐻, 𝑙) = bl(E)

Fig. 6. Small-Step Operational Semantics of 𝜆Qeff

• The current 𝜆Qeff is specially developed from the conventional point of view of algebraic
effects and deep handlers. Channels are unlimited and effects can be arbitrarily invoked
and handled. However, session types naturally track more fine-grained information. For
instance, ⊕{ℓ1 : ⊕{ℓ2}} can be interpreted as sequential usage of ℓ1 and ℓ2 exactly once.
We are exploring how to develop another version of 𝜆Qeff with linear channels and shallow
handlers which could precisely encode session-typed communication on both type and
term level.
• It would be interesting to extend 𝜆Qeff with concurrent semantics. Since effects and handlers

are intrinsically non-concurrent, it would be interesting to explore the notion of non-blocking
effects and their relation to asynchronous effects [Ahman and Pretnar 2021].
• Consider polymorphism and recursive types.
• It would be interesting to explore the usage of multiparty session types [Honda et al. 2008].
• In addition to bidirectional effects, we plan to extend 𝜆Qeff with more variants of algebraic ef-

fects and handlers such as n-ary handlers [Lindley et al. 2017] and higher-order effects [Piróg
et al. 2018; Poulsen and van der Rest 2023; van den Berg and Schrijvers 2023; van den Berg
et al. 2021].
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